The cyclin-dependent protein kinases are key regulators of cell cycle progression. Aberrant expression or altered activity of distinct cyclin-dependent kinase (CDK) complexes results in escape of cells from cell cycle control, leading to unrestricted cell proliferation. CDK inhibitors have the potential to induce cell cycle arrest and apoptosis in cancer cells, and identifying small-molecule CDK inhibitors has been a major focus in cancer research. Several CDK inhibitors are entering the clinic, the most recent being selective CDK2 and CDK4 inhibitors. We have identified a diaminopyrimidine compound, R547, which is a potent and selective ATP-competitive CDK inhibitor. In cell-free assays, R547 effectively inhibited CDK1/cyclin B, CDK2/cyclin E, and CDK4/cyclin D1 (K i = 1 -3 nmol/L) and was inactive (K i > 5,000 nmol/L) against a panel of >120 unrelated kinases. In vitro, R547 effectively inhibited the proliferation of tumor cell lines independent of multidrug resistant status, histologic type, retinoblastoma protein, or p53 status, with IC 50 s V 0.60 Mmol/L. The growth-inhibitory activity is characterized by a cell cycle block at G 1 and G 2 phases and induction of apoptosis. R547 reduced phosphorylation of the cellular retinoblastoma protein at specific CDK phosphorylation sites at the same concentrations that induced cell cycle arrest, suggesting a potential pharmacodynamic marker for clinical use. In vivo, R547 showed antitumor activity in all of the models tested to date, including six human tumor xenografts and an orthotopic syngeneic rat model. R547 was efficacious with daily oral dosing as well as with once weekly i.v. dosing in established human tumor models and at the targeted efficacious exposures inhibited phosphorylation of the retinoblastoma protein in the tumors. The selective kinase inhibition profile and the preclinical antitumor activity of R547 suggest that it may be promising for development for use in the treatment of solid tumors. R547 is currently being evaluated in phase I clinical trials.
The cyclin-dependent kinases (CDKs) and their cyclin partners are key regulators of the cell cycle. Since deregulation of CDKs is found with high frequency in many human cancer cells, pharmacological inhibition of CDKs with small molecules has the potential to provide an effective strategy for the treatment of cancer. The 2,4-diamino-5-ketopyrimidines 6 reported here represent a novel class of potent and ATP-competitive inhibitors that selectively target the cyclin-dependent kinase family. This diaminopyrimidine core with a substituted 4-piperidine moiety on the C2-amino position and 2-methoxybenzoyl at the C5 position has been identified as the critical structure responsible for the CDK inhibitory activity. Further optimization has led to a good number of analogues that show potent inhibitory activities against CDK1, CDK2, and CDK4 but are inactive against a large panel of serine/threonine and tyrosine kinases (K(i) > 10 microM). As one of these representative analogues, compound 39 (R547) has the best CDK inhibitory activities (K(i) = 0.001, 0.003, and 0.001 microM for CDK1, CDK2, and CDK4, respectively) and excellent in vitro cellular potency, inhibiting the growth of various human tumor cell lines including an HCT116 cell line (IC(50) = 0.08 microM). An X-ray crystal structure of 39 bound to CDK2 has been determined in this study, revealing a binding mode that is consistent with our SAR. Compound 39 demonstrates significant in vivo efficacy in the HCT116 human colorectal tumor xenograft model in nude mice with up to 95% tumor growth inhibition. On the basis of its superior overall profile, 39 was chosen for further evaluation and has progressed into Phase I clinical trial for the treatment of cancer.
The mechanism by which environmentally prevalent N-nitrosodiethanolamine (NDELA) and related 2-hydroxyethyl- or other beta-oxidized nitrosamines initiate the carcinogenic process has remained obscure. (32)P-Postlabeling assays for the pH sensitive glyoxal-deoxyguanosine (gdG) and the O(6)-2-hydroxyethyldeoxyguanosine (OHEdG) DNA adducts have been developed as probes in this mechanistic investigation and used in both in vitro and in vivo experiments. The ready cleavage of the glyoxal fragment from gdG at pH 7 and greater has required methods of optimization in order to achieve a detection limit of 0.05 micromol/mol of DNA. Nuclease P1 treatment enhances the detection of gdG adducts but does not increase the detection limit for OHEdG. For OHEdG, best results were achieved using fraction collection from HPLC (0.3 micromol/mol of DNA). Using radiochemical methods, both adducts could be detected either by HPLC or 2D TLC. NDELA, N-nitrosomorpholine (NMOR), N-nitrosomethyethanolamine (NMELA), and N-nitrosoethylethanolamine (NEELA) all produce both gdG and OHEdG adducts in rat liver DNA in vivo and are called bident carcinogens because fragments from both chains of the nitrosamine are incorporated into DNA. N-Nitroso-2-hydroxymorpholine (NHMOR), a metabolite of NDELA and NMOR, generates gdG in DNA in vitro and in vivo. gdG DNA adducts were found in the range 1.1-6.5 micromol/mol of DNA. OHEdG DNA adducts were produced from equimolar amounts of nitrosamines in rat liver in vivo over the range 4-25 micromol/mol of DNA and in the order NMELA > NEELA > NDELA > NMOR. Deuterated isotopomers of NDELA showed a marked isotope effect on DNA OHEdG adduct formation. alpha-Deuteration markedly decreased OHEdG adduct formation while beta-deuteration had the opposite effect. These data support the hypothesis that NDELA and related nitrosamines are activated by both enzyme mediated alpha-hydroxylation and beta-oxidation. The formation of OHEdG adducts from NDELA requires alpha-hydroxylation of the 2-hydroxyethyl chain, and formation of gdG necessitates a beta-oxidation as well. The bident nature of these carcinogens may explain why they are relatively potent carcinogens despite the fact that major proportions of doses are excreted unchanged.
N-Nitrosodiethanolamine (NDELA), an environmentally prevalent, potent carcinogen, undergoes competitive rat liver microsome-mediated oxidation at both the alpha (adjacent to N)- and beta-positions of the 2-hydroxyethyl chains. The former process, alpha-hydroxylation, is detected by the formation of glycolaldehyde (determined as its 2,4-dinitrophenylhydrazone DNP) that is assumed to arise from the decomposition of the corresponding alpha-hydroxynitrosamine, which is also the progenitor of the 2-hydroxyethyldiazonium ion. This finding refutes prior published work that states that the alpha-hydroxylation of NDELA does not occur. Competitive microsomal oxidation at the beta-position gives the hemiacetal N-nitroso-2-hydroxymorpholine (NHMOR) at a rate 1.5 times alpha-hydroxylation. Glycolaldehyde is oxidized in this system to glyoxal at a rate 39 times the conversion of NDELA to glycolaldehyde. The alpha-hydroxylation of NHMOR at either C-3 or C-5 to give glyoxal or glycolaldehyde, respectively, occurs at respective rates 3-6 times that of the alpha-hydroxylation of NDELA. Ethylene glycol, a hydrolysis product of the 2-hydroxyethyldiazonium ion is shown to undergo microsome mediate oxidation to glyoxal. Ethyl-2-hydroxyethylnitrosamine (NEELA) undergoes a similar set of microsome-mediated oxidations at alpha-position of the ethyl (fastest) and 2-hydroxyethyl groups, as well as beta-oxidation of the 2-hydroxyethyl group, a process which is slightly more rapid than alpha-hydroxylation of the same chain. Comparisons of oxidations rates of these substrates, as manipulated by preinducers, isoniazid, streptozocin, and phenobarbital, and enzyme inhibitors diethyldithiocarbamate and 4-methylpyrazole, with that of dimethylnitrosamine, a substrate for cytochrome P450 2E1, strongly suggest that this isozyme is also responsible for the oxidations reported here. alpha-Deuteration of NDELA practically eliminates its alpha-hydroxylation by microsomes from isoniazid induced rats, but doubles beta-oxidation, while beta-deuteration of this substrate significantly reduces beta-oxidation and enhances alpha-hydroxylation. Since both glyoxal-guanine and 2-hydroxyethyl-DNA base adducts are known to arise from the in vivo administration of NDELA and because this work demonstrates that these two fragments can come from the microsomal oxidation of a single nitrosamine molecule containing the 2-hydroxyethyl group, NDELA and related nitrosamines are bident (two-toothed) carcinogens, a process which is likely to enhance their carcinogenic potency.
A series of bioassays, including in vivo induction of DNA single-strand breaks (SSB) and cytotoxicity in cytochrome P450 2E1-transfected cells, were utilized with N-nitrosodiethanolamine (NDELA), its deuterated isotopomers (alpha-D4NDELA and beta-D4NDELA), N-nitroso-2-hydroxymorpholine (NHMOR), and two of its deuterated isotopomers (2-D-NHMOR and 5,5-D2-NHMOR) to probe the mechanism of carcinogenic activation of NDELA and the role of its metabolite NHMOR. DNA samples, taken from the livers of male Wistar rats 4 h after the administration of NDELA, exhibited dose-dependent DNA SSB levels over the range of 0.08-0.75 mmol/kg (body weight), with the greatest SSB level at the highest dose. Deuterium isotope effects on DNA SSB levels were inversely dependent on dose: alpha-D4NDELA, 3. 22-1.37; and beta-D4NDELA, 1.38-0.79. At the lowest dose of 0.15 mmol/kg (body weight), 5,5-D2-NHMOR gave an isotope effect for DNA SSB of 2.8 while that for 2-D-NHMOR was 0.7. NDELA and beta-D4NDELA were equally cytotoxic to human P450 2E1-transfected V79 Chinese hamster cells, while alpha-D4NDELA was not. Significant DNA SSB levels were observed in these cells for NDELA and beta-D4NDELA but not for alpha-D4NDELA. A kinetic deuterium isotope effect of 2.6 for Vmax/Km was observed for the horse liver alcohol dehydrogenase-mediated oxidation of beta-D4NDELA to NHMOR, while kH/kD for alpha-D4NDELA was 1.05. These data provide the first definitive evidence for the activation of NDELA by a pathway involving the scission of the alpha-CH bond and are consistent with P450 2E1-mediated alpha-hydroxylation of NDELA producing the corresponding reactive alpha-hydroxynitrosamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.