Recent translational studies in cancer have produced a wealth of evidence to support an association between sphingolipid metabolism and clinical outcomes, which underscores the clinical importance of sphingolipidrelated biomarkers in cancer diagnosis and prognosis. Importantly, circulating levels of bioactive sphingolipids were demonstrated to correlate with patient survival and treatment response in different tumour types, which could provide novel non-invasive cancer biomarkers. Here, we give a comprehensive overview of recent findings on bioactive sphingolipid species and protein regulators of their metabolism and signalling as novel potential biomarkers for risk assessment, prevention and prediction of treatment response in several types of solid cancers, including prostate, liver, pancreatic, breast and colon cancer, head and neck squamous cell carcinoma and gliomas. Finally, we critically discuss current issues in clinical translation of sphingolipid biomarkers and give our perspective on how these problems could be handled to facilitate implementation of sphingolipidbased diagnostics into clinical practice.
Carbon quantum dots (CQDs) have recently emerged as innovative theranostic nanomaterials, enabling fast and effective diagnosis and treatment. In this study, a facile hydrothermal approach for N-doped biomass-derived CQDs preparation from Citrus clementina peel and amino acids glycine (Gly) and arginine (Arg) has been presented. The gradual increase in the N-dopant (amino acids) nitrogen content increased the quantum yield of synthesized CQDs. The prepared CQDs exhibited good biocompatibility, stability in aqueous, and high ionic strength media, similar optical properties, while differences were observed regarding the structural and chemical diversity, and biological and antioxidant activity. The antiproliferative effect of CQD@Gly against pancreatic cancer cell lines (CFPAC-1) was observed. At the same time, CQD@Arg has demonstrated the highest quantum yield and antioxidant activity by DPPH scavenging radical method of 81.39 ± 0.39% and has been further used for the ion sensing and cellular imaging of cancer cells. The obtained results have demonstrated selective response toward Fe3+ detection, with linear response ranging from 7.0 µmol dm−3 to 50.0 µmol dm−3 with R2 = 0.9931 and limit of detection (LOD) of 4.57 ± 0.27 µmol dm−3. This research could be a good example of sustainable biomass waste utilization with potential for biomedical analysis and ion sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.