We take a new, scenario-based look at evaluation in information visualization. Our seven scenarios, evaluating visual data analysis and reasoning, evaluating user performance, evaluating user experience, evaluating environments and work practices, evaluating communication through visualization, evaluating visualization algorithms, and evaluating collaborative data analysis were derived through an extensive literature review of over 800 visualization publications. These scenarios distinguish different study goals and types of research questions and are illustrated through example studies. Through this broad survey and the distillation of these scenarios, we make two contributions. One, we encapsulate the current practices in the information visualization research community and, two, we provide a different approach to reaching decisions about what might be the most effective evaluation of a given information visualization. Scenarios can be used to choose appropriate research questions and goals and the provided examples can be consulted for guidance on how to design one's own study.
Figure 1: Examples of data physicalizations: (left) population density map of Mexico City co-created by Richard Burdett and exhibited at the Tate Modern (photo by Stefan Geens), (center) similar data shown on an actuated display from the MIT Media Lab [70], and (right) spherical particles suspended by acoustic levitation [61]. All images are copyright to their respective owners.
ABSTRACTPhysical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges, and laying out a research agenda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.