Liposomal formulations can be advantageous in a number of scenarios such as targeted delivery to reduce the systemic toxicity of highly potent Active Pharmaceutical Ingredients (APIs), to increase drug bioavailability...
Garlic is a well-known example of natural self-defence system consisting of an inactive substrate (alliin) and enzyme (alliinase) which, when combined, produce highly antimicrobial allicin. Increase of alliinase stability and its activity are of paramount importance in various applications relying on its use for in-situ synthesis of allicin or its analogues, e.g., pulmonary drug delivery, treatment of superficial injuries, or urease inhibitors in fertilizers. Here, we discuss the effect of temperature, pH, buffers, salts, and additives, i.e. antioxidants, chelating agents, reducing agents and cosolvents, on the stability and the activity of alliinase extracted from garlic. The effects of the storage temperature and relative humidity on the stability of lyophilized alliinase was demonstrated. A combination of the short half-life, high reactivity and non-specificity to particular proteins are reasons most bacteria cannot deal with allicin’s mode of action and develop effective defence mechanism, which could be the key to sustainable drug design addressing serious problems with escalating emergence of multidrug-resistant (MDR) bacterial strains.
Highlights-New in silico methodology for predicting drug loading and thermal release from liposomes was developed and compared with experiments -Virtual lipid bilayers were constructed using molecular dynamics models and their interaction with penetrating solutes was studied by atomistic simulations -Rules for permeability (logPerm) and partition (logKlip/wat) coefficients were established to characterise drug compatibility with liposomes -Permeability and partition coefficients of 57 toxic compounds from DrugBank database were calculated, 5 suitable candidates identified and 1 demonstrated experimentally
AbstractLiposomal formulations can be advantageous in a number of scenarios such as targeted delivery to reduce the systemic toxicity of highly potent Active Pharmaceutical Ingredients (APIs), to increase drug bioavailability by prolonging systemic circulation, to protect labile APIs from degradation in the gastrointestinal tract, or to improve skin permeation in dermal delivery. However, not all APIs are suitable for encapsulation in liposomes. Some of the issues are too high permeability of the API across the lipid bilayer, which may lead to premature leakage, too low permeability, which may hinder the drug release process, or too strong membrane affinity, which may reduce the overall efficacy of drug release from liposomes. Since the most reliable way to test API encapsulation and release from liposomes so far has been experimental, an in silico model capable of predicting API transport across the lipid bilayer might accelerate formulation development. In this work, we demonstrate a new in silico approach to compute the temperature dependent permeability of a set of compounds across the bilayer of virtual liposomes constructed by molecular dynamics simulation. To validate this approach, we have conducted a series of experiments confirming the model predictions using a homologous series of fluorescent dyes. Based on the performance of individual molecules, we have defined a set of selection criteria for identifying compatible APIs for stable encapsulation and thermally controlled release from liposomes. To further demonstrate the methodology, we have screened the DrugBank database, identified potent drugs suitable for liposome encapsulation and successfully carried out the loading and thermal release of one of them -an antimicrobial compound cycloserine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.