Agriculture, food industry, and manufacturing are just some of the areas where anaerobic technology can be used. Currently, anaerobic technologies are mainly used for wastewater treatment, solid waste treatment, or for the production of electrical and thermal energy from energy crops processing. However, a clear trend is towards more intensive use of this technology in biomass and biodegradable waste processing and hydrogen or biomethane production. An enormous number of anaerobic digesters are operating worldwide but there is very little information about the effect of different substrate combinations on the methanogens community. This is due to the fact that each of the anaerobic digesters has its own unique microbial community. For the most effective management of anaerobic processes it would be important to know the composition of a consortium of anaerobic microorganisms present in anaerobic digesters processing different input combinations of raw material. This paper characterizes the effect of the input raw materials on the diversity of the methanogen community. Two predominant microorganisms in anaerobic digesters were found to be 99% identity by the sequences of the 16S rRNA gene to the Methanoculleus and Thermogymnomonas genera deposited in GenBank.
Maytenus macrocarpa (Celastraceae) is a tree native to Amazonia. Its roots, leaves, bark, and combinations of these are used in traditional medicine mainly to treat rheumatism and, to a lesser extent, to heal wounds and to combat bronchitis and diarrhea. To date, mainly triterpenes and dihydro-β-agarofuran sesquiterpenes were isolated from M. macrocarpa. Extracts and selected pure compounds isolated from the leaves, roots, and stem bark showed antibacterial, antiviral, antiparasitic, anti-inflammatory, and cytotoxic activities in vitro. The aim of this review is to summarize the available ethnobotanical, phytochemical, and pharmacological information about this traditional Amazonian medicinal tree, as well as to attract the attention of phytochemists and pharmacognosists to this potentially interesting source of ethnopharmaceuticals.
Nontuberculous mycobacteria (NTM) are widely distributed in the environment. On one hand, they are opportunistic pathogens for humans and animals, and on the other hand, they are effective in biodegradation of some persistent pollutants. Following the recently recorded large abundance of NTM in extreme geothermal environments, the aim of the study was to ascertain the occurrence of NTM in the extreme environment of the water zone of the Hranice Abyss (HA). The HA mineral water is acidic, with large concentrations of free CO, and bacterial slimes creating characteristic mucilaginous formations. Both culture and molecular methods were used to compare the mycobacterial diversity across the linked but distinct ecosystems of HA and the adjacent Zbrašov Aragonite Caves (ZAC) with consideration of their pathogenic relevance. Six slowly growing NTM species (M. arupense, M. avium, M. florentinum, M. gordonae, M. intracellulare) and two rapidly growing NTM species (M. mucogenicum, M. sediminis) were identified in the water and in the dry zones at both sites. Proteobacteria were dominant in all the samples from both the HA and the ZAC. The bacterial microbiomes of the HA mineral water and HA slime were similar, but both differed from the microbiome in the ZAC mineral water. Actinobacteria, a phylum containing mycobacteria, was identified in all the samples at low proportional abundance. The majority of the detected NTM species belong among environmental opportunistic pathogens.
Quaternary benzophenanthridine alkaloids are known to have a wide range of biological effects, including antimicrobial, antifungal, anti-inflammatory, and antitumour activities. However, only sanguinarine and chelerythrine have been studied intensively. The aim of this study was to evaluate the anti-inflammatory potential of the five minor quaternary benzophenanthridine alkaloids sanguilutine, sanguirubine, chelirubine, chelilutine, and macarpine in vitro and to compare them with more thoroughly studied sanguinarine and chelerythrine. Before making cellbased assays, the cytotoxicity of the alkaloids was evaluated. The anti-inflammatory potential of the chosen alkaloids was evaluated as for their ability to modulate the lipopolysaccharideinduced secretion of tumour necrosis factor α (TNF-α) in the macrophage-like cell line THP-1. The cyclooxygenase (COX)-1 and COX-2 inhibitory activities were also measured. The results indicate that the presence of a methylenedioxy ring attached at carbon (C)7-C8 is important for reducing the secretion of TNF-α. Interestingly, this effect did not show a simple dependence on concentration. The selected alkaloids showed little or no anti-COX activity. The results obtained from the present experiments may provide additional information useful in understanding the structure-to-activity relationship of the quaternary benzophenanthridine alkaloids. The antiinflammatory potential and the cytotoxic effect are driven by the presence of a methylenedioxy ring attached at C7-C8 and C2-C3, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.