Dendritic cells (DCs) loaded in vitro with Ag are used as cellular vaccines to induce Ag-specific immunity. These cells are thought to be responsible for direct stimulation of Ag-specific T cells, which may subsequently mediate immunity. In this study, in transgenic mouse models with targeted MHC class II expression specifically on DCs, we show that the DC vaccine is responsible only for partial CD4+ T cell activation, but to obtain optimal expansion of T cells in vivo, participation of endogenous (resident) DCs, but not endogenous B cells, is crucial. Transfer of Ag to endogenous DCs seems not to be mediated by simple peptide diffusion, but rather by DC-DC interaction in lymph nodes as demonstrated by histological analysis. In contrast, injection of apoptotic or necrotic DC vaccines does not induce T cell responses, but rather represents an immunological null event, which argues that viability of DC vaccines can be crucial for initial triggering of T cells. We propose that viable DCs from the DC vaccine must migrate to the draining lymph nodes and initiate a T cell response, which thereafter requires endogenous DCs that present transferred Ag in order induce optimal T cell expansion. These results are of specific importance with regard to the applicability of DC vaccinations in tumor patients, where the function of endogenous DCs is suppressed by either tumors or chemotherapy.
Bispecific single-chain antibody constructs specific for human CD3 have been extensively studied for antitumor activity in human xenograft models using severe combined immunodeficient mice supplemented with human T cells. High efficacy at low effector-to-target ratios, independence of T cell costimuli and a potent activation of previously unstimulated polyclonal T cells were identified as hallmarks of this class of bispecific antibodies. Here we studied a bispecific single-chain antibody construct (referred to as 'bispecific T cell engager', BiTE) in an immunocompetent mouse model. This was possible by the use of a murine CD3-specific BiTE, and a syngeneic melanoma cell line (B16F10) expressing the human Ep-CAM target. The murine CD3-specific BiTE, called 2C11x4-7 prevented in a dose-dependent fashion the outgrowth of subcutaneously growing B16/Ep-CAM tumors with daily i.v. injections of 5 or 50 microg BiTE which was most effective. Treatment with 2C11x4-7 was effective even when it was started 10 days after tumor cell inoculation but delayed treatments showed a reduction in the number of cured animals. 2C11x4-7 was also highly active in a lung tumor colony model. When treatment was started on the day of intravenous tumor cell injection, seven out of eight animals stayed free of lung tumors, and three out of eight animals when treatment was started on day 5. Our study shows that BiTEs also have a high antitumor activity in immunocompetent mice and that there is no obvious need for costimulation of T cells by secondary agents.
Summary
The relative contributions of different types of antigen presenting cells to T‐cell activation, expansion and induction of effector functions are still not fully understood. In order to evaluate the roles of dendritic versus B cells during these phases of a CD4 T‐cell response in vivo, we adoptively transferred major histocompatibility complex class II restricted, T‐cell receptor‐transgenic CD4+ T cells into transgenic mice expressing selectively the T‐cell restricting class II molecules on either dendritic cells, B cells or both. Upon immunization with peptide antigen, we observed that dendritic cells were sufficient to induce activation, expansion, interleukin‐2 production and germinal centre migration of antigen‐specific T cells, independently of other antigen‐presenting cells. In contrast, neither resting nor activated B cells had similar antigen‐presenting capacities in vivo. However, in double transgenic mice where both B cells and dendritic cells were capable of presenting antigen, T cells showed increased proliferation, expansion and cytokine production in vivo. Moreover, higher antigen‐specific CD4 T‐cell numbers accumulated in germinal centres. Our data demonstrate that dendritic cells are sufficient to activate naive CD4 T cells in vivo, but B cells subsequently can enhance CD4 T‐cell expansion further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.