The transcriptional regulation of several dozen genes in response to low oxygen tension is mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric protein composed of two subunits, HIF-1α and HIF-1β. In the HIF-1α-deficient human leukemic cell line, Z-33, exposed to mild (8% O2) or severe (1% O2) hypoxia, we found significant upregulation of two related heterogenous nuclear ribonucleoproteins, RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), which are highly conserved cold stress proteins with RNA-binding properties. Hypoxia also induced upregulation of RBM3 and CIRP in the murine HIF-1β-deficient cell line, Hepa-1 c4. In various HIF-1 competent cells, RBM3 and CIRP were induced by moderate hypothermia (32°C) but hypothermia was ineffective in increasing HIF-1α or vascular endothelial growth factor (VEGF), a known HIF-1 target. In contrast, iron chelators induced VEGF but not RBM3 or CIRP. The RBM3 and CIRP mRNA increase after hypoxia was inhibited by actinomycin-D, and in vitro nuclear run-on assays demonstrated specific increases in RBM3 and CIRP mRNA after hypoxia, which suggests that regulation takes place at the level of gene transcription. Hypoxia-induced RBM3 or CIRP transcription was inhibited by the respiratory chain inhibitors NaN3 and cyanide in a dose-dependent fashion. However, cells depleted of mitochondria were still able to upregulate RBM3 and CIRP in response to hypoxia. Thus, RBM3 and CIRP are adaptatively expressed in response to hypoxia by a mechanism that involves neither HIF-1 nor mitochondria.
Despite the short-comings inherent to retrospective analyses, we propose that surgery should be reserved for infants not responding to pharmacological PDA closure.
The tyrosine kinase receptor Tie2 (also known as Tek) plays an important role in the development of the embryonic vasculature and persists in adult endothelial cells (ECs). Tie2 was shown to be upregulated in tumors and skin wounds, and its ligands angiopoietin-1 and -2, although they are not directly mitogenic, modulate neovascularization. To gain further insight into the regulation of Tie2, we have studied the effect of hypoxia and inflammatory cytokines, two conditions frequently associated with neoangiogenic processes, on Tie2 expression in human ECs. Exposure to 1% O(2) led to a time-dependent significant rise of Tie2 protein levels in human coronary microvascular endothelial cells (HCMECs) and dermal microvascular ECs (HMEC-1) (3.2- and 2.5-fold within 24 hours), which was reversible after reoxygenation, and induced a less marked increase in human umbilical vein ECs (HUVECs; 1.7-fold). Hypoxia-conditioned medium and D-deoxyglucose did not change Tie2 expression, but desferrioxamine and cobalt, which are known to mimic hypoxia-sensing mechanisms, induced Tie2 at ambient oxygen tensions. Tumor necrosis factor-alpha induced Tie2 in a time- and dose-dependent fashion in all 3 EC types (HUVEC, 2.3-fold; HMEC-1, 2. 8-fold; and HCMEC, 3.0-fold; 10 ng/mL, 24 hours). Enhanced expression was also found after exposure to interleukin-1beta (1 ng/mL). Changes in Tie2 protein levels were paralleled by changes in mRNA expression. In accordance with these in vitro findings, immunohistochemistry revealed focal upregulation of Tie2 in capillaries at the border of infarcted human and rat myocardium. In conclusion, the data show that hypoxia and inflammatory cytokines upregulate Tie2, which may contribute to the angiogenic response in ischemic tissues.
Thrombocytopenia in the first 24 hours after birth was not associated with PDA in this largest VLBW/ELBW infant cohort studied to date. Impaired platelet function, due to immaturity and critical illness, rather than platelet number, might play a role in ductus arteriosus patency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.