Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic × receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1β (PGC-1α or PGC-1β, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1β expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.
In mammals, white adipose tissue (WAT) stores and releases lipids, whereas brown adipose tissue (BAT) oxidizes lipids to fuel thermogenesis. In obese individuals, WAT undergoes profound changes; it expands, becomes dysfunctional, and develops a low-grade inflammatory state. Importantly, BAT content and activity decline in obese subjects, mainly as a result of the conversion of brown adipocytes to white-like unilocular cells. Here, we show that BAT "whitening" is induced by multiple factors, including high ambient temperature, leptin receptor deficiency, β-adrenergic signaling impairment, and lipase deficiency, each of which is capable of inducing macrophage infiltration, brown adipocyte death, and crown-like structure (CLS) formation. Brown-to-white conversion and increased CLS formation were most marked in BAT from adipose triglyceride lipase ()-deficient mice, where, according to transmission electron microscopy, whitened brown adipocytes contained enlarged endoplasmic reticulum, cholesterol crystals, and some degenerating mitochondria, and were surrounded by an increased number of collagen fibrils. Gene expression analysis showed that BAT whitening in -deficient mice was associated to a strong inflammatory response and NLRP3 inflammasome activation. Altogether, the present findings suggest that converted enlarged brown adipocytes are highly prone to death, which, by promoting inflammation in whitened BAT, may contribute to the typical inflammatory state seen in obesity.
Elevated circulating fatty acids (FAs) contribute to the development of obesity-associated metabolic complications such as insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). Hence, reducing adipose tissue lipolysis to diminish the mobilization of FAs and lower their respective plasma concentrations represents a potential treatment strategy to counteract obesity-associated disorders. Here we show that specific inhibition of adipose triglyceride lipase (Atgl) with the chemical inhibitor, Atglistatin, effectively reduces adipose tissue lipolysis, weight gain, IR and NAFLD in mice fed a high-fat diet. Importantly, even long-term treatment does not lead to lipid accumulation in ectopic tissues such as the skeletal muscle or heart. Thus, the severe cardiac steatosis and cardiomyopathy that is observed in genetic models of Atgl deficiency does not occur in Atglistatin-treated mice. Our data validate the pharmacological inhibition of Atgl as a potentially powerful therapeutic strategy to treat obesity and associated metabolic disorders.
Triacylglycerols are stored in eukaryotic cells within lipid droplets (LD).The LD core is enwrapped by a phospholipid monolayer with phosphatidylcholine (PC), the major phospholipid, and phosphatidylethanolamine (PE), a minor component. We demonstrate that the onset of LD formation is characterized by a change in cellular PC, PE, and phosphatidylserine (PS). With induction of differentiation of 3T3-L1 fibroblasts into adipocytes, the cellular PC/PE ratio decreased concomitant with LD formation, with the most pronounced decline between confluency and day 5. The mRNA for PS synthase-1 (forms PS from PC) and PS decarboxylase (forms PE from PS) increased after day 5. Activity and protein of PE N-methyltransferase (PEMT), which produces PC by methylation of PE, are absent in 3T3-L1 fibroblasts but were induced at day 5. High fat challenge induced PEMT expression in mouse adipose tissue. PE, produced via PS decarboxylase, was the preferred substrate for methylation to PC. A PEMT-GFP fusion protein decorated the periphery of LD. PEMT knockdown in 3T3-L1 adipocytes correlated with increased basal triacylglycerol hydrolysis. Pemt ؊/؊ mice developed desensitization against adenosine-mediated inhibition of basal hydrolysis in adipose tissue, and adipocyte hypotrophy was observed in Pemt ؊/؊ animals on a high fat diet. Knock-out of PEMT in adipose tissue down-regulated PS synthase-1 mRNA, suggesting coordination between PE supply and converting pathways during LD biosynthesis. We conclude that two consecutive processes not previously related to LD biogenesis, (i) PE production via PS and (ii) PE conversion via PEMT, are implicated in LD formation and stability.Cytosolic neutral lipid droplets (LD) 7 within eukaryotic cells represent intracellular storage compartments for triacylglycerols (TG) and cholesteryl esters to bridge alimentary or metabolic gaps (1). Adipocytes are the body's primary depots for efficient TG storage. Upon defined stimulation of adipocytes (2), fatty acids are released from TG droplets to supply energy or to provide essential components for the synthesis of biological membranes. Given these important functions, LD of all cell types are considered as dynamic organelles that represent fundamental components of intracellular lipid homeostasis (3).It is generally accepted that LD originate from the cytosolic leaflet of the endoplasmic reticulum (ER), contain a core of neutral lipids, and are surrounded by a phospholipid (PL) monolayer (4, 5). The finding that cytosolic LD in adipocytes contain at their periphery minor amounts of ER proteins such as BiP (6) and calnexin might reflect their site of origin in the ER. The primary LD proteins are so-called cage proteins, which not only stabilize LD but also protect their neutral lipid cores from unregulated degradation (7). Several other proteins contributing to the regulation of intracellular vesicle trafficking or targeting (3), and components of the intermediate filament protein machinery, have also been shown to be associated with intracellular LD (8, 9).D...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.