Information about distribution and habitat use of organisms is crucial for conservation. Bird distribution within the breeding season has been usually considered static, but this assumption has been questioned. Within-season movements may allow birds to track changes in habitat quality or to adjust site choice between subsequent breeding attempts. Such movements are especially likely in temperate mountains, given the substantial environmental heterogeneity and changes occurring during bird breeding season. We investigated the within-season movements of breeding songbirds in the European Alps in spring-summer 2018, using repeated point counts and dynamic occupancy models. For all the four species for which we obtained sufficient data, changes in occupancy during the season strongly indicated the occurrence of within-season movements. Species occupancy changed during the season according to fine-scale vegetation/land-cover types, while microclimate (mean temperature) affected initial occupancy in two species. The overall occupancy rate increased throughout the season, suggesting the settlement of new individuals coming from outside the area. A static distribution cannot be assumed during the breeding season for songbirds breeding in temperate mountains. This needs to be considered when planning monitoring and conservation of Alpine birds, as withinseason movements may affect the proportion of population/distribution interested by monitoring or conservation programs.Detailed information about the distribution and habitat use of organisms is essential for their conservation. Species distribution models are widely used to relate environmental and climatic variables to species occurrences, and the resulting relationships are used to predict species distributions in space and time 1 . This can provide useful information to assess the potential impact of environmental changes, identify priority areas for conservation, define ecological networks and design monitoring schemes 1,2 .Distribution models have been largely used to investigate the distribution of bird species at different scales. In spite of the generally high mobility of birds, studies have generally assumed a static distribution during the breeding season 1 . However, several studies now indicate that within-breeding season movements (hereafter 'within-season movements') may be common, at least in multi-brooded species breeding in seasonal environments 3-10 . These movements probably represent displacements to higher quality breeding sites, occurring from one to the subsequent brood, or after a reproduction failure 3,11 . Habitat quality may change throughout the season 12 , as well as the cues available to birds to select a suitable breeding site 13 ; in both cases, moving to more suitable areas would be an adaptive response. Within-season movements have been assessed in a broad variety of species with different reproductive behaviour and across many different scales (i.e. within study areas ranging from c. 1 up to c. 5000 km 2 5,7,8,14,15,23 , or even acros...
Unravelling the environmental factors driving species distribution and abundance is crucial in ecology and conservation. Both climatic and land cover factors are often used to describe species distribution/abundance, but their interrelations have been scarcely investigated. Climatic factors may indeed affect species both directly and indirectly, e.g., by influencing vegetation structure and composition. We aimed to disentangle the direct and indirect effects (via vegetation) of local temperature on bird abundance across a wide elevational gradient in the European Alps, ranging from montane forests to high-elevation open areas. In 2018, we surveyed birds by using point counts and collected fine-scale land cover and temperature data from 109 sampling points. We used structural equation modelling to estimate direct and indirect effects of local climate on bird abundance. We obtained a sufficient sample for 15 species, characterized by a broad variety of ecological requirements. For all species we found a significant indirect effect of local temperatures via vegetation on bird abundance. Direct effects of temperature were less common and were observed in seven woodland/shrubland species, including only mountain generalists; in these cases, local temperatures showed a positive effect, suggesting that on average our study area is likely colder than the thermal optimum of those species. The generalized occurrence of indirect temperature effects within our species set demonstrates the importance of considering both climate and land cover changes to obtain more reliable predictions of future species distribution/abundance. In fact, many species may be largely tracking suitable habitat rather than thermal niches, especially among homeotherm organisms like birds.
Species living in high mountain areas are currently threatened by climate change and human land use changes. High‐elevation birds frequently inhabit island‐like suitable patches around mountain peaks, and in such conditions the capability to exchange individuals among patches is crucial to maintain gene flow. However, we lack information regarding the dispersal ability of most of these species and the possible influence of landscape features on dispersal. In this study, we used population genomics and landscape resistance modelling to investigate dispersal in a high‐elevation specialist migratory bird, the water pipit Anthus spinoletta. We aimed to assess the levels of gene flow in this species within a wide area of the European Alps, and to assess the effects of environmental characteristics on gene flow, by testing the isolation by distance (IBD) hypothesis against the isolation by resistance (IBR) hypothesis. We found clear support for IBR, indicating that water pipits preferentially disperse across suitable breeding habitat (i.e., high‐elevation grassland). IBR was stronger in the part of the study area with less extended suitable habitat. Landscape resistance was slightly better described by habitat suitability models than landscape connectivity models. Despite the observed IBR, gene flow within the study area was high, probably also because of the still wide and relatively continuous breeding range. The forecasted reduction of range of this species may lead to stronger effects of IBR on gene flow. Other high‐elevation specialist birds may show similar IBR patterns, but with possibly stronger effects on gene flow because of their more reduced and patchy habitats.
The morphology of bird wings is subject to a variety of selective pressures, including migration, predation, habitat structure and sexual selection. Variation in wing morphology also occurs at the intraspecific and intrapopulation level, and can be related to sex, age, migration strategy and environmental factors. The relationship between environment and intraspecific variation in wing morphology is still poorly understood. In this work, we studied the relationship between wing morphology and breeding environment in a high‐elevation specialist bird, the water pipit Anthus spinoletta. We calculated wing isometric size, pointedness and convexity of 84 birds mist‐netted at breeding sites in year 2021 in the European Alps. We then searched for associations between these traits and potentially relevant breeding site characteristics (vegetation structure, elevation, latitude). For all wing traits, sex and one or more environmental factors best explained the variation, with environmental factors explaining between 3 and 8% of the variation. Wing size was negatively related to tree cover and wing convexity was negatively related to bush cover. Elevation contributed to explain variation in wing pointedness, but the direction of its effect was unclear. The negative relationship between wing size and tree cover could be due to intraspecific competition, i.e. to the relegation of smaller winged low‐quality individuals in marginal grassland areas. Higher wing convexity could improve predator escape ability in areas with scarce protecting vegetation, with possible effects on habitat choice. These findings represent one of the few demonstrated cases of wing morphology–environment relationships at the intraspecific level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.