The aim of this study was to examine the prognostic significance of carbonic anhydrase IX (CA-IX), an endogenous marker for tumor hypoxia; endoglin (CD105), a proliferation-associated and hypoxia-inducible glycoprotein and 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA lesion, in breast cancer patients. Immunohistochemical expressions of CA-IX, CD105 and 8-OHdG, analyzed on paraffin-embedded tumor tissues from forty female breast cancer patients, were used to assess their prognostic implication on overall survival (OS) and relapse-free survival (RFS). Patients with high CA-IX expression (above cut-off value) had a higher occurrence of relapse (P = = 0.002). High CA-IX expression was significantly associated with shorter RFS (P < 0.001, hazard ratio (HR) 0.21) and shorter OS (P < 0.001, HR 0.19). Lymph node negative patients with high CA-IX expression had worse RFS (P = 0.031, HR 0.14) and OS (P = 0.005, HR 0.05). Patients with grade I&II tumors and high CA-IX expression showed shorter RFS (P = 0.028, HR 0.28) and OS (P = 0.008, HR 0.20). Worse OS (P = 0.046, HR 0.28) was found in subgroup of patients with grade II tumors and high CA-IX expression. Among all three markers, only high CA-IX expression was strong independent prognostic indicator for shorter OS (HR 4.14, 95% CI 1.28-13.35, P = 0.018) and shorter RFS (HR 3.99, 95% CI 1.38-11.59, P = 0.011). Elevated expression of CA-IX was an independent prognostic factor for decreased RFS and OS and a significant marker for tumor aggressiveness. CD105 had week prognostic value; whereas, 8-OHdG, in this study, did not provide sufficient evidence as a prognostic indicator in breast cancer patients.
The term tumor markers include a spectrum of molecules and substances with widely divergent characteristics whose presence in the significant amount can be related to the malignant disease. An ideal tumor marker should have high specificity and sensitivity, which would allow its use in early diagnosis and prognosis of malignant disease, as well as in prediction of therapeutic response and follow-up of the patients. Numerous biochemical entities have emerged as potentially valuable tumor markers so far, but only few markers showed to be of considerable clinical reliability and have been accepted into standard clinical practice. Recent development of genomics and proteomics has enabled the examination of many new potential tumor markers. Scientific studies on discovery, development, and application of tumor markers have been proceeding quite rapidly providing great opportunities for improving the management of cancer patients. This review is focusing on the clinical usefulness of various tumor markers already in clinical practice as well as certain potential markers, giving a brief description of their prognostic and predictive significance in most common malignancies.
Caulerpa taxifolia is a marine alga of tropical and subtropical distribution and a well-known invasive species in several temperate regions. Its invasiveness mainly stems from the production of secondary metabolites, some of which are toxic or repellent substances. In this study we investigated the possible inhibitory effects of C. taxifolia secondary metabolites on the activity of two zebrafish (Danio rerio) uptake transporters that transport organic anions (Oatp1d1) and cations (Oct1). Both transporters were transiently transfected and overexpressed in human embryonic kidney HEK293T cells. Transport activity assays using lucifer yellow (LY) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as model substrates were applied for the determination of Oatp1d1 and Oct1 interactors. A two-step Effect-Directed Analysis (EDA) procedure was applied for the separation and identification of compounds. We identified caulerpenyne (CYN) as the major metabolite in C. taxifolia and reveal its potent inhibitory effect towards zebrafish Oatp1d1 as well as weak effect on zebrafish Oct1 transport. The observed effect was confirmed by testing CYN purified from C. taxifolia, resulting in an IC of 17.97 μM, and a weak CYN interaction was also determined for the zebrafish Oct1 transporter. Finally, using Michaelis-Menten kinetics experiments, we identified CYN as a non-competitive inhibitor of the zebrafish Oatp1d1. In conclusion, this study describes a novel mechanism of biological activity in C. taxifolia, shows that CYN was a potent non-competitive inhibitor of zebrafish Oatp1d1, and demonstrates that EDA can be reliably used for characterization of environmentally relevant complex biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.