Nanostructures fabricated by focused electron beam induced deposition (FEBID) often have low deposit purities that can be traced back to incomplete precursor decomposition. Among others, removal of halide ligands is particularly slow under electron irradiation. Herein, we report on the electron-induced decomposition of cisplatin (cis-Pt(NH 3 ) 2 Cl 2 ), a potential precursor for Pt deposition. Cisplatin samples were irradiated with electrons, and the resulting compositional and chemical changes were monitored by surface analysis tools. The results reveal that electron exposure yields nearly pure Pt deposits, and the ligands are transformed into the gas-phase species N 2 , NH 3 , and HCl. Also, surface-bound NH x (x < 3) species were identified that can act as reducing agents. Production of such reactive intermediates and N 2 implies that the electron-induced decomposition of the NH 3 ligands releases atomic hydrogen, a species known to efficiently remove surface Cl via HCl formation. Furthermore, proton transfer from NH 3 to Cl − triggered by ionization is deduced from the formation of NH 4 + and proposed as a second reaction pathway producing HCl. Overall, this leads to rapid loss of the Cl ligands. We thus provide evidence that NH 3 is favorable either as a ligand in FEBID precursors or as a postdeposition purification agent for halide-contaminated FEBID deposits.
Ammonia (NH3)-assisted purification of deposits fabricated by focused electron beam-induced deposition (FEBID) has recently been proven successful for the removal of halide contaminations. Herein, we demonstrate the impact of combined NH3 and electron processing on FEBID deposits containing hydrocarbon contaminations that stem from anionic cyclopentadienyl-type ligands. For this purpose, we performed FEBID using bis(ethylcyclopentadienyl)ruthenium(II) as the precursor and subjected the resulting deposits to NH3 and electron processing, both in an environmental scanning electron microscope (ESEM) and in a surface science study under ultrahigh vacuum (UHV) conditions. The results provide evidence that nitrogen from NH3 is incorporated into the carbon content of the deposits which results in a covalent nitride material. This approach opens a perspective to combine the promising properties of carbon nitrides with respect to photocatalysis or nanosensing with the unique 3D nanoprinting capabilities of FEBID, enabling access to a novel class of tailored nanodevices.
Focused electron beam induced deposition (FEBID) is a versatile direct-write approach to produce nanostructures from organometallic precursor molecules. Ideally, the material is deposited only when precursors interact with and are dissociated by the impinging electrons so that the process is spatially defined by the electron beam. In reality, however, thermal surface reactions as known from chemical vapor deposition can also contribute to the dissociation of the precursors. They often produce material with higher purity but can also impair the spatial selectivity of the electron-induced deposit growth. This work aims at an approach to suppress such thermal chemistry and to re-enable it within an area defined by the electron beam. We have, thus, used a surface science approach to study the inhibition of autocatalytic growth (AG) of Fe from Fe(CO)5 by NH3 and the reactivation of AG on the surface by electron irradiation. The experiments were performed under ultrahigh vacuum conditions using thermal desorption spectrometry to characterize adsorption and reactivity of Fe(CO)5 on Fe seed layers that were prepared by dosing Fe(CO)5 during electron irradiation of the entire sample surface (referred to as EBID herein). Auger electron spectroscopy was used to monitor deposit growth and to reveal the potential inhibition of AG by NH3 as well as the reactivation of the surface by electron irradiation. The results show that adsorption of NH3 slows down AG on deposits prepared by EBID but not on Fe layers produced by AG. Electron irradiation after adsorption of NH3 reactivates the surface and thus re-establishes AG. We propose that co-injection of NH3 during FEBID from Fe(CO)5 could be a viable strategy to suppress unwanted AG contributions and, therefore, enhance the spatial control of the deposition process.
Focused electron beam induced deposition (FEBID) is a versatile tool to produce nanostructures through electron-induced decomposition of metal-containing precursor molecules. However, the metal content of the resulting materials is often low. Using different Ag(I) complexes, this study shows that the precursor performance depends critically on the molecular structure. This includes Ag(I) 2,2-dimethylbutanoate, which yields high Ag contents in FEBID, as well as similar aliphatic Ag(I) carboxylates, aromatic Ag(I) benzoate, and the acetylide Ag(I) 3,3-dimethylbutynyl. The compounds were sublimated on inert surfaces and their electron-induced decomposition was monitored by electron-stimulated desorption (ESD) experiments in ultrahigh vacuum and by reflection−absorption infrared spectroscopy (RAIRS). The results reveal that Ag(I) carboxylates with aliphatic side chains are particularly favourable for FEBID. Following electron impact ionization, they fragment by loss of volatile CO2. The remaining alkyl radical converts to a stable and equally volatile alkene. The lower decomposition efficiency of Ag(I) benzoate and Ag(I) 3,3-dimethylbutynyl is explained by calculated average local ionization energies (ALIE) which reveal that ionization from the unsaturated carbon units competes with ionization from the coordinate bond to Ag. This can stabilise the ionized complex with respect to fragmentation. This insight provides guidance with respect to the design of novel FEBID precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.