Classical homocystinuria is caused by mutations in the cystathionine β-synthase (CBS) gene. Previous experiments in bacterial and yeast cells showed that many mutant CBS enzymes misfold and that chemical chaperones enable proper folding of a number of mutations. In the present study, we tested the extent of misfolding of 27 CBS mutations previously tested in E. coli under the more folding-permissive conditions of mammalian CHO-K1 cells and the ability of chaperones to rescue the conformation of these mutations. Expression of mutations in mammalian cells increased the median activity 16-fold and the amount of tetramers 3.2-fold compared with expression in bacteria. Subsequently, we tested the responses of seven selected mutations to three compounds with chaperone-like activity. Aminooxyacetic acid and 4-phenylbutyric acid exhibited only a weak effect. In contrast, heme arginate substantially increased the formation of mutant CBS protein tetramers (up to sixfold) and rescued catalytic activity (up to ninefold) of five out of seven mutations (p.A114V, p.K102N, p.R125Q, p.R266K, and p.R369C). The greatest effect of heme arginate was observed for the mutation p.R125Q, which is non-responsive to in vivo treatment with vitamin B(6). Moreover, the heme responsiveness of the p.R125Q mutation was confirmed in fibroblasts derived from a patient homozygous for this genetic variant. Based on these data, we propose that a distinct group of heme-responsive CBS mutations may exist and that the heme pocket of CBS may become an important target for designing novel therapies for homocystinuria.
The role of folates as coenzymes in 1-carbon metabolism and the clinical consequences of disturbed folate metabolism are widely known. Folate status is a complex trait determined by both exogenous and endogenous factors. This study analyzed the association between 12 genetic variants and folate status in a Czech population with no folate fortification program. These 12 genetic variants were selected from 56 variant alleles found by resequencing the coding sequences and adjacent intronic regions of 6 candidate genes involved in folate metabolism or transport (FOLR1, FOLR2, FOLR3, MTHFR, PCFT, and RFC) from 29 individuals with low plasma and erythrocyte folate concentrations. Regression analyses of a cohort of 511 Czech controls not taking folate supplements revealed that only 2 variants in the MTHFR gene were associated with altered folate concentrations in plasma and/or erythrocytes. In our previous study, we observed that the common variant MTHFR c.665C > T (known as c.677C > T; p.A222V) was associated with decreased plasma folate concentrations. In the present study, we show in addition that the rare variant MTHFR c.1958C > T (p.T653M) is associated with significantly increased erythrocyte folate concentrations (P = 0.02). Multivariate regression analysis revealed that this uncommon variant, which is present in 2% of Czech control chromosomes, explains 0.9% of the total variability of erythrocyte folate concentrations; the magnitude of this effect size was comparable with that of the common MTHFR c.665C > T variant. This result indicates that the rare genetic variants may determine folate status to a similar extent as the common allelic variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.