In addition to phosphoenolpyruvate carboxylase (PEPCx), pyruvate carboxylase (PCx) has recently been found as an anaplerotic enzyme in the amino-acid-producing bacterium Corynebacterium glutamicum. Using oligonucleotides designed according to conserved regions of PCx amino acid sequences from other organisms, a 200 bp fragment central to the C. glutamicum PCx gene (pyc) was amplified from genomic DNA by PCR. This fragment was then used to identify and to subclone the entire C. glutamicum pyc gene. The cloned pyc gene was expressed in C. glutamicum, as cells harbouring the gene on plasmid showed four- to fivefold higher specific PCx activities when compared to the wild-type (WT). Moreover, increased PCx protein levels in the pyc-plasmid-carrying strain were readily detected after SDS-PAGE of cell-free extracts. DNA sequence analysis of the pyc gene, including its 5’ and 3’ flanking regions, and N-terminal sequencing of the pyc gene product predicts a PCx polypeptide of 1140 amino acids with an M r of 123070. The amino acid sequence of this polypeptide shows between 62% and 45% identity when compared to PCx enzymes from other organisms. Transcriptional analyses revealed that the pyc gene from C. glutamicum is monocistronic (3.5 kb mRNA) and that its transcription is initiated at an A residue 55 bp upstream of the translational start. Inactivation of the chromosomal pyc gene in C. glutamicum WT led to the absence of PCx activity and to negligible growth on lactate, indicating that PCx is essential for growth on this carbon source. Inactivation of both the PCx gene and the PEPCx gene in C. glutamicum led additionally to the inability to grow on glucose, indicating that no further anaplerotic enzymes for growth on carbohydrates exist in this organism.
BackgroundCorynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin.ResultsHere, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 ɛ-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum ΔcrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum ΔcrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 ± 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum ΔcrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 ± 0.3 mg/g CDW were obtained.ConclusionC. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.
The recent discovery that phosphoenolpyruvate carboxylase (PEPCx) is dispensable for growth and lysine production in Corynebacterium glutamicum implies that this organism possesses (an) alternative anaplerotic enzyme(s). In permeabilized cells of C. glutamicum, w e detected pyruvate carboxylase (PCx) activity. This activity was effectively inhibited by low concentrations of ADP, AMP and acetyl-CoA. PCx activity was highest [45 2 5 nmol min'l (mg dry wt) ''] in cells grown on lactate or pyruvate, and was about two-to threefold lower when the cells were grown on glucose or acetate, suggesting that formation of PCx is regulated by the carbon source in the growth medium. In cells grown a t low concentrations of biotin (< 5 pg I-'), PCx activity was drastically reduced, indicating that the enzyme is a biotin protein. Growth experiments with the wild-type and a defined PEPCx-negative mutant of C. glutamicum on glucose showed that the mutant has a significantly higher demand for biotin than the wild-type, whereas both strains have the same high biotin requirement for growth on lactate and the same low biotin requirement for growth on acetate. These results indicate that (i) PCx is an essential anaplerotic enzyme for growth on glucose in the absence of PEPCx, (ii) PCx is an essential anaplerotic enzyme for growth on lactate even in the presence of PEPCx, and (iii) PCx has no anaplerotic significance for growth on acetate as the carbon source. In support of these conclusions, screening for clones unable to grow on a minimal medium containing lactate, but able to grow on a medium containing glucose or acetate, led to the isolation of PCx-defective mutants of C. glutamicum .~~~ ~~
Astaxanthin, a red C40 carotenoid, is one of the most abundant marine carotenoids. It is currently used as a food and feed additive in a hundred-ton scale and is furthermore an attractive component for pharmaceutical and cosmetic applications with antioxidant activities. Corynebacterium glutamicum, which naturally synthesizes the yellow C50 carotenoid decaprenoxanthin, is an industrially relevant microorganism used in the million-ton amino acid production. In this work, engineering of a genome-reduced C. glutamicum with optimized precursor supply for astaxanthin production is described. This involved expression of heterologous genes encoding for lycopene cyclase CrtY, β-carotene ketolase CrtW, and hydroxylase CrtZ. For balanced expression of crtW and crtZ their translation initiation rates were varied in a systematic approach using different ribosome binding sites, spacing, and translational start codons. Furthermore, β-carotene ketolases and hydroxylases from different marine bacteria were tested with regard to efficient astaxanthin production in C. glutamicum. In shaking flasks, the C. glutamicum strains developed here overproduced astaxanthin with volumetric productivities up to 0.4 mg·L−1·h−1 which are competitive with current algae-based production. Since C. glutamicum can grow to high cell densities of up to 100 g cell dry weight (CDW)·L−1, the recombinant strains developed here are a starting point for astaxanthin production by C. glutamicum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.