The ratio of amyloid precursor protein (APP)669–711 (Aβ−3–40)/Aβ1–42 in blood plasma was reported to represent a novel Alzheimer’s disease biomarker. Here, we describe the characterization of two antibodies against the N-terminus of Aβ−3–x and the development and “fit-for-purpose” technical validation of a sandwich immunoassay for the measurement of Aβ−3–40. Antibody selectivity was assessed by capillary isoelectric focusing immunoassay, Western blot analysis, and immunohistochemistry. The analytical validation addressed assay range, repeatability, specificity, between-run variability, impact of pre-analytical sample handling procedures, assay interference, and analytical spike recoveries. Blood plasma was analyzed after Aβ immunoprecipitation by a two-step immunoassay procedure. Both monoclonal antibodies detected Aβ−3–40 with no appreciable cross reactivity with Aβ1–40 or N-terminally truncated Aβ variants. However, the amyloid precursor protein was also recognized. The immunoassay showed high selectivity for Aβ−3–40 with a quantitative assay range of 22 pg/mL–7.5 ng/mL. Acceptable intermediate imprecision of the complete two-step immunoassay was reached after normalization. In a small clinical sample, the measured Aβ42/Aβ−3–40 and Aβ42/Aβ40 ratios were lower in patients with dementia of the Alzheimer’s type than in other dementias. In summary, the methodological groundwork for further optimization and future studies addressing the Aβ42/Aβ−3–40 ratio as a novel biomarker candidate for Alzheimer’s disease has been set.
This is an open access article under the terms of the Creat ive Commo ns Attri bution-NonCo mmercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Our analysis confirms that XP-C patients without increased sun sensitivity develop non-melanoma skin cancers earlier than sun-sensitive XP-C patients. Reduced cellular mRNA levels are characteristic for XP complementation group C and qRT-PCR represents a rapid diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.