The Her-2/Neu receptor tyrosine kinase is vastly overexpressed in about 30% of primary breast, ovary, and gastric carcinomas. The nakijiquinones are the only naturally occurring inhibitors of this important oncogene, and structural analogues of the nakijiquinones may display inhibitory properties toward other receptor tyrosine kinases involved in cell signaling and proliferation. Here, we describe the first enantioselective synthesis of the nakijiquinones. Key elements of the synthesis are (i) the reductive alkylation of a Wieland-Miescher-type enone with a tetramethoxyaryl bromide, (ii) the oxidative conversion of the aryl ring into a p-quinoid system, (iii) the regioselective saponification of one of the two vinylogous esters incorporated therein, and (iv) the selective introduction of different amino acids via nucleophilic conversion of the remaining vinylogous ester into the corresponding vinylogous amide. The correct stereochemistry and substitution patterns are completed by conversion of two keto groups into a methyl group and an endocyclic olefin via olefination/reduction and olefination/isomerization sequences, respectively. This synthesis route also gave access to analogues of nakijiquinone C with inverted configuration at C-2 or with an exocyclic instead of an endocyclic double bond. Investigation of the kinase-inhibiting properties of the synthesized derivatives revealed that the C-2 epimer 30 of nakijiquinone C is a potent and selective inhibitor of the KDR receptor, a receptor tyrosine kinase involved in tumor angiogenesis. Molecular modeling studies based on the crystal structure of KDR and a model of the ATP binding site built from a crystal structure of FGF-R revealed an insight into the structural basis for the difference in activity between the natural product nakijiquinone C and the C-2 epimer 30.
Blood and lymph vessel growth is regulated by Tie‐2 and the VEGFR‐3 receptor tyrosine kinases. These proteins also play major roles in the growth and metastasis of cancers. A novel class of inhibitors of these signal‐transducing proteins, and of the IGF1R kinase (such as 1), is identified from a natural product derived compound library. This discovery opens up new opportunities for the development of antitumor agents.
Receptor tyrosine kinases (RTKs) such as Tie-2, IGF1R, Her-2/Neu, EGFR, and VEGFR1-3 play crucial roles in the control of cell growth and differentiation. Inhibition of such RTKs has become a major focus of current anticancer drug development, and therefore the discovery of new classes of inhibitors for these signal-transducing proteins is of prime importance. We have recently proposed a novel concept for improving the hit-finding process by employing natural products as biologically validated starting points in structural space for compound library development. In this concept, natural products are regarded as evolutionary chosen ligands for protein domains which are structurally conserved yet genetically mobile. Here we report on the discovery of novel and highly selective VEGFR-2 and -3, Tie-2, and IGF1R inhibitors derived from the naturally occurring Her-2/Neu kinase inhibitor nakijiquinone C and developed on the basis of this concept. Based on the structure of the natural product, a small library (74 members) was synthesized and investigated for inhibition of kinases with highly similar ATP-binding domains. The library yielded inhibitors with IC(50)s in the low micromolar range with high frequency (7 out of 74). In particular, four inhibitors of Tie-2 were found, a kinase critically involved in the formation of new blood vessels from preexisting ones (angiogenesis) and believed to be a new promising target in antitumor therapy. These results support the "domain concept". To advance the development of improved inhibitors, extensive molecular modeling studies were undertaken, including the construction of new homology models for VEGFR-2 and Tie-2. These studies revealed residues in the kinase structure which are crucial to the development of tailor-made receptor tyrosine kinase inhibitors.
A Wieland-Miescher type ketone and a tetramethoxyaryl derivative are the key building blocks for the enantioselective total synthesis of nakijiquinone C (1). The nakijiquinones are the only natural products known that selectively inhibit the Her-2/Neu tyrosine kinase, a protooncogene product that is vastly overexpressed in about 30 % of primary breast, ovary, and gastric carcinomas.
Background Symptoms of anxiety co-occur in a variety of disorders including in depressive episodes of bipolar disorder and in patients with thyrotoxicosis. Treatment of refractory bipolar disorder with supraphysiologic doses of levothyroxine (L-T4) has been shown to improve the phenotypic expression of the disorder and is associated with an increase of circulating thyroid hormones. However, it might be associated with somatic and mental adverse effects. Here we report the investigation of the influence of treatment with supraphysiologic doses of L-T4 on symptoms of anxiety in patients with refractory bipolar depression. Methods Post-hoc analysis from a 6-week, multi-center, randomized, double-blind, placebo-controlled study of the effects of supraphysiologic L-T4 treatment on anxiety symptoms in bipolar depression. Anxiety symptoms were measured weekly with the Hamilton anxiety/somatization factor (HASF) score of the Hamilton Depression Rating Scale (HAMD) and the State- and Trait Anxiety Inventory (STAI). Results Treatment of both groups was associated with a significant reduction in anxiety symptoms (p < 0.001) with no statistical difference between groups (LT-4: from 5.9 (SD = 2.0) at baseline to 3.7 (SD = 2.4) at study end; placebo: from 6.1 (SD = 2.4) at baseline to 4.4 (SD = 2.8) at study end; p = 0.717). Severity of anxiety at baseline did not show a statistically significant correlation to the antidepressive effect of treatment with supraphysiologic doses of L-T4 (p = 0.811). Gender did not show an influence on the reduction of anxiety symptoms (females: from 5.6 (SD = 1.7) at baseline to 3.5 (SD = 2.4) at study end; males: from 6.1 (SD = 2.3) at baseline to 4.0 (SD = 2.4) at study end; p = 0.877). Conclusions This study failed to detect a difference in change of anxiety between bipolar depressed patients treated with supraphysiologic doses of L-T4 or placebo. Comorbid anxiety symptoms should not be considered a limitation for the administration of supraphysiologic doses of L-T4 refractory bipolar depressed patients. Trial registration ClinicalTrials, ClinicalTrials.gov identifier: NCT01528839. Registered 2 June 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/study/NCT01528839
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.