Abstract-Deep neural networks enjoy high interest and have become the state-of-art methods in many fields of machine learning recently. Still, there is no easy way for a choice of network architecture. However, the choice of architecture can significantly influence the network performance.This work is the first step towards an automatic architecture design. We propose a genetic algorithm for an optimization of a network architecture. The algorithm is inspired by and designed directly for the Keras library [1] that is one of the most common implementations of deep neural networks.The target application is the prediction of air pollution based on sensor measurements. The proposed algorithm is evaluated on experiments on sensor data and compared to several fixed architectures and support vector regression.
Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.