The antioxidant activity of rooibos flavonoids, including the dihydrochalcones aspalathin and nothofagin and their corresponding flavone glycosides, was evaluated using the ABTS radical cation, metal chelating, and Fe(II)-induced microsomal lipid peroxidation assays. Epigallocatechin gallate (EGCG) and Trolox were used as reference standards. Optimized geometric conformers of aspalathin and nothofagin, in addition to calculated physicochemical properties, were considered to explain interaction with the microsomal membrane structure and thus relative potency of the dihydrochalcones. The most potent radical scavengers were aspalathin (IC50 = 3.33 microM) and EGCG (IC50 = 3.46 microM), followed by quercetin (IC50 = 3.60 microM) and nothofagin (IC50 = 4.04 microM). The least effective radical scavengers were isovitexin (IC50 = 1224 microM) and vitexin (IC50 > 2131 microM). Quercetin (IC50 = 17.5 microM) and EGCG (IC50 = 22.3 microM) were the most effective inhibitors of lipid peroxidation. Aspalathin (IC50 = 50.2 microM) and catechin (IC50 = 53.3 microM) displayed similar potencies. Nothofagin (IC50 = 1388 microM) was almost as ineffective as its flavone glycoside analogues.
A liquid chromatographic (LC) method for simultaneous determination of fumonisins B1 (FB1), B2 (FB2), and B3 (FB3) in corn was subjected to a collaborative study involving 12 participants from 10 countries, in which the accuracy and reproducibility characteristics of the method were established. Mean analyte recoveries from corn ranged from 81.1 to 84.2% for FB1 (at a spiking range of 500 to 8000 ng/g), from 75.9 to 81.9% for FB2 (at a spiking range of 200 to 3200 ng/g), and from 75.8 to 86.8% for FB3 (at a spiking range of 100 to 1600 ng/g). The valid data were statistically evaluated after exclusion of outliers. Relative standard deviations for within-laboratory repeatability ranged from 5.8 to 13.2% for FB1, from 7.2 to 17.5% for FB2, and from 8.0 to 17.2% for FB3. Relative standard deviations for between-laboratory reproducibility varied from 13.9 to 22.2% for FB1, from 15.8 to 26.7% for FB2, and from 19.5 to 24.9% for FB3. HORRAT ratios, calculated for the individual toxin analogues, ranged from 0.75 to 1.73. The LC method for determination of fumonisins B1, B2, and B3 in corn (at concentrations of 800–12800 ng total fumonisins/g) has been adopted by AOAC INTERNATIONAL.
Alteration of lipid constituents of cellular membranes has been proposed as a possible mechanism for cancer promotion by fumonisin B(1 )(FB(1)). To further investigate this hypothesis a dietary dosage which initiates and promotes liver cancer (250 mg FB(1)/kg) was fed to male Fischer rats for 21 days and the lipid composition of plasma, microsomal, mitochondrial and nuclear subcellular fractions determined. The effect of FB(1) on the cholesterol, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), as well as sphingomyelin (SM) and the phospholipids-associated fatty acid (FA) profiles, were unique for each subcellular membrane fraction. PE was significantly increased in the microsomal, mitochondrial and plasma membrane fractions, whereas cholesterol was increased in both the microsomal and nuclear fraction. In addition SM was decreased and increased in the mitochondrial and nuclear fractions, respectively. The decreased PC/PE and polyunsaturated/saturated (P/S) FA ratio in the different membrane fractions suggest a more rigid membrane structure. The decreased levels in polyunsaturated fatty acids in PC together with a pronounced increase in C18:1omega9 and C18:2omega6 were indicative of an impaired delta-6 desaturase. The increased omega6/omega3 ratio and decreased C20:4omega6 PC/PE ratio due to an increase in C20:4omega6 in PE relatively to PC in the different subcellular fractions suggests a shift towards prostanoid synthesis of the E2 series. Changes in the PE and C20:4omega6 parameters in the plasma membrane could alter key growth regulatory and/or other cell receptors in lipid rafts known to be altered by FB(1). An interactive role between C20:4omega6 and ceramide in the mitochondria, is suggested to regulate the balance between proliferation and apoptosis in altered initiated hepatocytes resulting in their selective outgrowth during cancer promotion effected by FB(1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.