Because of its availability, ease of collection, and correlation with physiology and pathology, urine is an attractive source for clinical proteomics/peptidomics. However, the lack of comparable data sets from large cohorts has greatly hindered the development of clinical proteomics. Here, we report the establishment of a reproducible, high resolution method for peptidome analysis of naturally occurring human urinary peptides and proteins, ranging from 800 to 17,000 Da, using samples from 3,600 individuals analyzed by capillary electrophoresis coupled to MS. All processed data were deposited in an Structured Query Language (SQL) database. This database currently contains 5,010 relevant unique urinary peptides that serve as a pool of potential classifiers for diagnosis and monitoring of various diseases. As an example, by using this source of information, we were able to define urinary peptide biomarkers for chronic kidney diseases, allowing diagnosis of these diseases with high accuracy. Application of the chronic kidney disease-specific biomarker set to an independent test cohort in the subsequent replication phase resulted in 85.5% sensitivity and 100% specificity. These results indicate the potential usefulness of capillary electrophoresis coupled to MS for clinical applications in the analysis of naturally occurring urinary peptides. Molecular & Cellular Proteomics 9:2424 -2437, 2010.From the Departments of a Chemistry and
No abstract
Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303620.065; P,0.001) and integrated discrimination improvement (0.05860.014; P,0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.
Owing to its availability, ease of collection, and correlation with pathophysiology of diseases, urine is an attractive source for clinical proteomics. However, many proteomic studies have had only limited clinical impact, due to factors such as modest numbers of subjects, absence of disease controls, small numbers of defined biomarkers, and diversity of analytical platforms. Therefore, it is difficult to merge biomarkers from different studies into a broadly applicable human urinary proteome database. Ideally, the methodology for defining the biomarkers should combine a reasonable analysis time with high resolution, thereby enabling the profiling of adequate samples and recognition of sufficient features to yield robust diagnostic panels. Capillary electrophoresis coupled to mass spectrometry (CE-MS), which was used to analyze urine samples from healthy subjects and patients with various diseases, is a suitable approach for this task. The database of these datasets compiled from the urinary peptides enabled the diagnosis, classification, and monitoring of a wide range of diseases. CE-MS exhibits excellent performance for biomarker discovery and allows subsequent biomarker sequencing independent of the separation platform. This approach may elucidate the pathogenesis of many diseases, and better define especially renal and urological disorders at the molecular level.
Diabetic nephropathy (DN) is a progressive kidney disease, a well-known complication of long-standing diabetes. DN is the most frequent reason for dialysis in many Western countries. Early detection may enable development of specific drugs and early initiation of therapy, thereby postponing/preventing the need for renal replacement therapy. We evaluated urinary proteome analysis as a tool for prediction of DN. Capillary electrophoresis–coupled mass spectrometry was used to profile the low–molecular weight proteome in urine. We examined urine samples from a longitudinal cohort of type 1 and 2 diabetic patients (n = 35) using a previously generated chronic kidney disease (CKD) biomarker classifier to assess peptides of collected urines for signs of DN. The application of this classifier to samples of normoalbuminuric subjects up to 5 years prior to development of macroalbuminuria enabled early detection of subsequent progression to macroalbuminuria (area under the curve [AUC] 0.93) compared with urinary albumin routinely used to determine the diagnosis (AUC 0.67). Statistical analysis of each urinary CKD biomarker depicted its regulation with respect to diagnosis of DN over time. Collagen fragments were prominent biomarkers 3–5 years before onset of macroalbuminuria. Before albumin excretion starts to increase, there is a decrease in collagen fragments. Urinary proteomics enables noninvasive assessment of DN risk at an early stage via determination of specific collagen fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.