The ability of the nematode Anguillicola crassus to infect eel larvae (glass-eel stage) was tested. The results show that glass-eels fed on infected copepods, the natural intermediate host of the nematode, can be infected. Light microscopical examination of the infected developing swimbladder tissue revealed that the infection results in a significant thickening of the connective tissue. The basolateral labyrinth of gas gland cells is very much reduced in infected swimbladders, and the distance of gas gland cells to blood capillaries is enlarged. Critical swimming speed, defined as the speed where the larvae were no longer able to swim against the current, was similar in infected and uninfected animals. At intermediate speeds (about 60-80% of critical swimming speed) infected eels showed a slightly higher swimming activity than control animals. Resting oxygen consumption, measured as an index of metabolic activity, within the first 2 months of infection was higher in control animals, which may be due to a reduced rate of activity in infected glass-eels. By 4-5 months after the infection, however, it was significantly higher in infected animals. This may indicate that at this stage a higher activity of the animals is required to compensate for the increase in body density, but swimming performance of infected and non-infected glass-eels was not significantly different. Oxygen consumption during swimming activity, measured in a swim tunnel at 50% of maximal swimming speed, also was not affected. The results thus show that even glass-eels can be infected with A. crassus, and this probably contributes to the rapid spread of the nematode in Europe. While aerobic metabolism during swimming activity is not affected at this stage of infection, the swimbladder tissue shows severe histological changes, which most likely will impair swimbladder function.
The swimbladder of the adult eel, Anguilla anguilla, with its bipolar countercurrent system, the rete mirabile, is a widely used model for swimbladder function, but very little is known about the development of this swimbladder. Our histological studies on the developing swimbladder revealed that during metamorphosis the swimbladder becomes present as a dorsal outgrowth of the esophagus. It is filled with surfactant, and gas was not detected in the swimbladder. In the young glass-eel, the epithelial (gas gland) cells of the swimbladder are columnar, but do not yet have the typical basolateral labyrinth established in adult animals. Few blood vessels are found in the swimbladder tissue, and the submucosa is present as a thick layer of connective tissue, giving a large diffusion distance between blood vessel and swimbladder lumen. Within the next 2 or 3 months of development, gas gland cells develop their typical basolateral labyrinth, and the thickness of the submucosa is significantly reduced, resulting in a short diffusion distance between blood vessels and the swimbladder lumen. The first filling of the swimbladder with gas is observed while the gas gland cells are still in a poorly differentiated status and it appears unlikely that these cells can accomplish their typical role in gas deposition. The presence of small gas bubbles in the swimbladder as well as in the ductus pneumaticus at the time of initial swimbladder inflation suggests that the swimbladder is filled by air gulping or possibly by taking up gas bubbles from the water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.