Levosimendan, a novel calcium sensitizer developed for the treatment of acute heart failure, is an inodilator that increases coronary flow. Because it was recently shown that levosimendan stimulates potassium current through K(ATP) channels in isolated rat arterial cells, our aim was to assess whether the levosimendan-induced increase in coronary flow is due to the opening of the K(ATP) channels in coronary smooth muscle. The effect of levosimendan on the diastolic coronary flow velocity (DCFV) was measured in the Langendorff perfused spontaneously beating guinea-pig heart in the absence and presence of glibenclamide. Pinacidil was used as a reference compound, and the protein kinase C inhibitor bisindolylmaleimide was used to study the dilatory effect of levosimendan when the K(ATP) channels in smooth muscle are not inhibited by PKC-dependent phosphorylation. Levosimendan (0.01-1 microM) increased DCFV concentration-dependently and was noncompetitively antagonized by 0.1 microM glibenclamide, whereas pinacidil was inhibited competitively by glibenclamide. In the presence of glibenclamide the positive inotropic and chronotropic effects of levosimendan were unaltered. The effect of bisindolylmaleimide and levosimendan on DCFV was additive. The results indicate that levosimendan induced coronary vasodilation through the opening of the K(ATP) channels. Levosimendan and pinacidil probably have different binding sites on the K(ATP) channels. The additive effect of bisindolylmaleimide and levosimendan on the increase of DCFV suggests that the latter binds to the unphosphorylated form of the channel.
Background and purpose: Progression of heart failure in hypertensive Dahl rats is associated with cardiac remodeling and increased cardiomyocyte apoptosis. This study was conducted to study whether treatment with a novel inotropic vasodilator compound, levosimendan, could prevent hypertension-induced cardiac remodeling and cardiomyocyte apoptosis. Experimental approach: 6-week-old salt-sensitive Dahl/Rapp rats received levosimendan (0.3 mg kg -1 and 3 mg kg -1 via drinking fluid) and high salt diet (NaCl 7%) for 7 weeks, Dahl/Rapp rats on low-salt diet served as controls. Blood pressure, cardiac functions by echocardiography, cardiomyocyte apoptosis by TUNEL technique, tissue morphology, myocardial expression of calcium cycling proteins, and markers of neurohumoral activation were determined. Key Results: Untreated Dahl/Rapp rats on high salt diet developed severe hypertension, cardiac hypertrophy and moderate systolic dysfunction. 38% of Dahl/Rapp rats (9/24) survived the 7-week-follow-up period. Cardiomyocyte apoptosis was increased by 6-fold during high salt diet. Levosimendan improved survival (survival rates in low-and high-dose levosimendan groups 12/12 and 9/12, po0.001 and p ¼ 0.05, respectively), increased cardiac function, and ameliorated cardiac hypertrophy. Levosimendan dose-dependently prevented cardiomyocyte apoptosis. Levosimendan normalized salt-induced increased expression of natriuretic peptide, and decreased urinary noradrenaline excretion. Levosimendan also corrected saltinduced decreases in myocardial SERCA2a protein expression and myocardial SERCA2a/NCX-ratio. Conclusions and Implications: Improved survival by the novel inotropic vasodilator levosimendan in hypertensive Dahl/Rapp rats is mediated, at least in part, by amelioration of hypertension-induced cardiac remodeling and cardiomyocyte apoptosis.
Levosimendan is a novel calcium sensitizer that increases contraction force without change in intracellular calcium ([Ca2+]i); milrinone is a phosphodiesterase inhibitor that exerts a positive inotropic effect by increasing [Ca2+]i. The effects of levosimendan and milrinone on oxygen consumption in the isolated guinea-pig heart were studied. Isolated guinea-pig hearts were paced (280 beats/min) and perfused according to the Langendorff technique. Levosimendan (0.01-1 microM) or milrinone (0.1-10 microM) were added cumulatively and changes from baseline for diastolic and systolic pressure (LVEDP and LVSP), contractility and relaxation (+dP/dt and -dP/dt), and coronary flow and oxygen consumption (CF and VO2) were calculated. Levosimendan was found to be 10 to 30 times more potent than milrinone as an inotropic agent. The effect on VO2 was markedly lower in levosimendan-perfused hearts than in milrinone-perfused hearts (P = 0.031 between the concentration-dependent effects of the two drugs). The maximum increase in VO2 was 10 +/- 4% in the levosimendan group and 38 +/- 15% in the milrinone group. The economy of the contraction was more advantageous in levosimendan-perfused hearts (P = 0.005 vs. milrinone group on both VO2/+dP/dt and VO2/LVSP). It was concluded that levosimendan exerts a positive inotropic effect without disturbing the energy balance of the heart.
BackgroundDiabetes is associated with changes in myocardial stress-response pathways and is recognized as an independent risk factor for cardiac remodeling. Using spontaneously diabetic Goto Kakizaki rats as a model of type 2 DM we investigated whether post-translational modifications in the Akt - FOXO3a pathway, Sirt1 - p53 pathway and the mitogen activated protein kinase p38 regulator are involved in post-infarct cardiac remodelingMethodsExperimental myocardial infarction (MI) was induced by left anterior descending coronary artery ligation in spontaneously diabetic Goto-Kakizaki rats and non-diabetic Wistar controls. Cardiac function was studied by echocardiography. Myocardial hypertrophy, cardiomyocyte apoptosis and cardiac fibrosis were determined histologically 12 weeks post MI or Sham operation. Western blotting was used to study Caspase-3, Bax, Sirt1, acetylation of p53 and phosphorylation of p38, Akt and FOXO3a. Electrophoretic mobility shift assay was used to assess FOXO3a activity and its nuclear localization.ResultsPost-infarct heart failure in diabetic GK rats was associated with pronounced cardiomyocyte hypertrophy, increased interstitial fibrosis and sustained cardiomyocyte apoptosis as compared with their non-diabetic Wistar controls. In the GK rat myocardium, Akt- and FOXO3a-phosphorylation was decreased and nuclear localization of FOXO3a was increased concomitantly with increased PTEN protein expression. Furthermore, increased Sirt1 protein expression was associated with decreased p53 acetylation, and phosphorylation of p38 was increased in diabetic rats with MI.ConclusionsPost-infarct heart failure in diabetic GK rats was associated with more pronounced cardiac hypertrophy, interstitial fibrosis and sustained cardiomyocyte apoptosis as compared to their non-diabetic controls. The present study suggests important roles for Akt-FOXO3a, Sirt1 - p53 and p38 MAPK in the regulation of post-infarct cardiac remodeling in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.