The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.
European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably proanthocyanidins (oligomers and polymers), in both lingonberries and cranberries exert multiple bioactivities that may be exploited in food development.
The antioxidant activity of berry phenolics (at concentrations of 1.4, 4.2, and 8.4 mug of purified extracts/mL of liposome sample) such as anthocyanins, ellagitannins, and proanthocyanidins from raspberry (Rubus idaeus), bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and black currant (Ribes nigrum) was investigated in a lactalbumin-liposome system. The extent of protein oxidation was measured by determining the loss of tryptophan fluorescence and formation of protein carbonyl compounds and that of lipid oxidation by conjugated diene hydroperoxides and hexanal analyses. The antioxidant protection toward lipid oxidation was best provided by lingonberry and bilberry phenolics followed by black currant and raspberry phenolics. Bilberry and raspberry phenolics exhibited the best overall antioxidant activity toward protein oxidation. Proanthocyanidins, especially the dimeric and trimeric forms, in lingonberries were among the most active phenolic constituents toward both lipid and protein oxidation. In bilberries and black currants, anthocyanins contributed the most to the antioxidant effect by inhibiting the formation of both hexanal and protein carbonyls. In raspberries, ellagitannins were responsible for the antioxidant activity. While the antioxidant effect of berry proanthocyanidins and anthocyanins was dose-dependent, ellagitannins appeared to be equally active at all concentrations. In conclusion, berries are rich in monomeric and polymeric phenolic compounds providing protection toward both lipid and protein oxidation.
In the present study, water, ethanolic, and methanolic extracts from seven selected wild fruits originally from the Mediterranean area, namely, strawberry tree ( Arbutus unedo L., AU), azarole ( Crataegus azarolus L., CA), common hawthorn ( Crataegus monogyna L., CM), blackthorn ( Prunus spinosa L., PS), dog rose ( Rosa canina L., RC), elm-leaf blackberry ( Rubus ulmifolius Schott, RU), and rowan ( Sorbus aucuparia L., SA), were analyzed for the total amount and profile of phenolic compounds and for the in vitro antioxidant activity against the DPPH and ABTS radicals (study 1). The seven fruits showed different chemical compositions, which consequently led to different antioxidant potentials. Among the seven fruits initially analyzed, AU, CM, RC, and RU had the highest amount of phenolic compounds and displayed the greatest antioxidant activity in vitro. Extracts from these four fruits were tested as inhibitors of lipid oxidation in raw pork burger patties subjected to refrigerated storage at 2 degrees C for 12 days (study 2). The quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), hexanal content, and color stability were used as indicators of oxidative reactions. The four selected fruits displayed intense antioxidant activity against lipid oxidation, which highlights the potential usage of these fruits as ingredients for the manufacture of healthy meat products. Among them, RC and AU were particularly efficient as their protective effect against lipid oxidation was more intense than that displayed by quercetin (230 mg/kg of burger patty).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.