During fall 2008, an outbreak of hand, foot, and mouth disease (HFMD) with onychomadesis (nail shedding) as a common feature occurred in Finland. We identified an unusual enterovirus type, coxsackievirus A6 (CVA6), as the causative agent. CVA6 infections may be emerging as a new and major cause of epidemic HFMD.
Rhinoviruses are frequently transmitted from children to other family members. Most rhinovirus infections in young children are symptomatic, but secondary infections in adults are often asymptomatic. Multiple virus types circulate simultaneously in families.
Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden.
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.