Various methods have been used for time-resolved contrastenhanced magnetic resonance angiography (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization. The purpose of this work was to use a computer-controlled motion phantom for study of the temporal fidelity of three-dimensional (3D) time-resolved sequences in depicting a contrast bolus. It is hypothesized that the view order of the acquisition and the selection of views in the reconstruction can affect the positional accuracy and sharpness of the leading edge of the bolus and artifactual signal preceding the edge. Phantom studies were performed using dilute gadolinium-filled vials that were moved along tabletop tracks by a computer-controlled motor. Several view orders were tested using view-sharing and Cartesian sam- Contrast-enhanced magnetic resonance angiography (CE-MRA) is a noninvasive technique that is widely used for the diagnosis of vascular disease (1-3). Technical challenges in CE-MRA have included imaging the arterial phase of the contrast bolus without venous contamination (4) and obtaining images with adequately high spatial resolution. Also, CE-MRA methods can possibly be prone to artifacts due to the motion of flowing blood, the varying concentration of contrast material, and the manner in which k-space is acquired (4,5). The issue of timing the data acquisition to the arterial phase has been addressed with a variety of techniques such as a test bolus (6) or automated triggering (7,8). Also, centric view orders (9,10), if initiated effectively, can allow extended acquisition times, and thus high-spatial-resolution arterial-phase images without appreciable venous signal. Alternatively, time-resolved MRA allows matching the central k-space sampling to peak arterial enhancement by repeatedly acquiring images as contrast material moves through the area of interest, either with two-dimensional (2D) (11,12) or three-dimensional (3D) (13) acquisition. However, due to the extended (typically tens of seconds) dwell time of intravenously-injected contrast material in the vasculature, this generally involves a tradeoff: time spent in resampling low spatial frequencies for improved temporal resolution could have been spent in sampling high spatial frequencies for improved spatial resolution (14). This in turn has been addressed by attempting to speed up the acquisition with short repetition times or by using view sharing (13,15,16), a method by which images are reconstructed more frequently than the intrinsic image acquisition time.Recently, the tradeoff of time with spatial resolution in time-resolved sequences has been changed with the advent of parallel acquisition techniques (17)(18)(19). This is particularly true when 2D techniques (20) are applied to 3D imaging, as is typically the case for CE-M...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.