We consider the verified compilation of high-level managed languages like Java or C# whose intermediate representations provide support for shared-memory synchronization and automatic memory management. In this environment, the interactions between application threads and the language runtime ( e.g. , the garbage collector) are regulated by compiler-injected code snippets. Example of snippets include allocation fast paths among others. In our TOPLAS paper we propose a refinement-based proof methodology that precisely relates concurrent code expressed at different abstraction levels, cognizant throughout of the relaxed memory semantics of the underlying processor. Our technique allows the compiler writer to reason compositionally about the atomicity of low-level concurrent code used to implement managed services. We illustrate our approach with examples taken from the verification of a concurrent garbage collector.
Memory models define an interface between programs written in some language and their implementation, determining which behaviour the memory (and thus a program) is allowed to have in a given model. A minimal guarantee memory models should provide to the programmer is that well-synchronized, that is, data-race free code has a standard semantics. Traditionally, memory models are defined axiomatically, setting constraints on the order in which memory operations are allowed to occur, and the programming language semantics is implicit as determining some of these constraints. In this work we propose a new approach to formalizing a memory model in which the model itself is part of a weak operational semantics for a (possibly concurrent) programming language. We formalize in this way a model that allows write operations to the store to be buffered. This enables us to derive the ordering constraints from the weak semantics of programs, and to prove, at the programming language level, that the weak semantics implements the usual interleaving semantics for data-race free programs, hence in particular that it implements the usual semantics for sequential code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.