One of the most important tasks of molecular pharmacology is the deorphanization of the large number of G-protein-coupled receptors with unidentified endogenous agonists. We recently reported the cloning and analysis of expression of a novel human family C G-protein-coupled receptor, termed hGPRC6A. To identify agonists at this orphan receptor, we faced the challenges of achieving surface expression in mammalian cell lines and establishing an appropriate functional assay. Generating a chimeric receptor construct, h6A/5.24, containing the ligand binding amino-terminal domain (ATD) of hGPRC6A with the signal transducing transmembrane and C terminus of the homologous goldfish 5.24 receptor allowed us to overcome these obstacles. Homology modeling of the hGPRC6A ATD based on the crystal structure of the metabotropic glutamate receptor subtype 1 predicted interaction with ␣-amino acids and was employed to rationally select potential ligands. Measurement of Ca 2ϩ -dependent chloride currents in Xenopus laevis oocytes facilitated the deorphanization of h6A/ 5.24 and identification of L-␣-amino acids as agonists. The most active agonists were basic L-␣-amino acids, L-Arg, L-Lys, and L-ornithine, suggesting that these may function as endogenous signaling molecules. Measurement of intracellular calcium in tsA cells expressing h6A/5.24 allowed determination of EC 50 values, which confirmed the agonist preferences observed in oocytes. Cloning, cell surface expression and deorphanization of the mouse ortholog further reinforces the assignment of the agonist preferences of hGPRC6A. This study demonstrates the utility of a chimeric receptor approach in combination with molecular modeling, for elucidating agonist interaction with GPRC6A, a novel family C G-protein-coupled receptor.
Family C of G-protein coupled receptors (GPCRs) from humans is constituted by eight metabotropic glutamate (mGlu(1-8)) receptors, two heterodimeric gamma-aminobutyric acid(B) (GABA(B)) receptors, a calcium-sensing receptor (CaR), three taste (T1R) receptors, a promiscuous L-alpha-amino acid receptor (GPRC6A), and five orphan receptors. Aside from the orphan receptors, the family C GPCRs are characterised by a large amino-terminal domain, which bind the endogenous orthosteric agonists. Recently, a number of allosteric modulators binding to the seven transmembrane domains of the receptors have also been reported. Family C GPCRs regulate a number of important physiological functions and are thus intensively pursued as drug targets. So far, two drugs acting at family C receptors (the GABA(B) agonist baclofen and the positive allosteric CaR modulator cinacalcet) have been marketed. Cinacalcet is the first allosteric GPCR modulator to enter the market, which demonstrates that the therapeutic principle of allosteric modulation can also be extended to this important drug target class. In this review we outline the structure and function of family C GPCRs with particular focus on the ligand binding sites, and we present the most important pharmacological agents and the therapeutic prospects of the receptors.
gamma-Hydroxybutyrate (GHB), a metabolite of gamma-aminobutyric acid (GABA), is proposed to function as a neurotransmitter or neuromodulator. gamma-Hydroxybutyrate and its prodrug, gamma-butyrolactone (GBL), recently received increased public attention as they emerged as popular drugs of abuse. The actions of GHB/GBL are believed to be mediated by GABAB and/or specific GHB receptors, the latter corresponding to high-affinity [3H]GHB-binding sites coupled to G-proteins. To investigate the contribution of GABAB receptors to GHB actions we studied the effects of GHB in GABAB(1)-/- mice, which lack functional GABAB receptors. Autoradiography reveals a similar spatial distribution of [3H]GHB-binding sites in brains of GABAB(1)-/- and wild-type mice. The maximal number of binding sites and the KD values for the putative GHB antagonist [3H]6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene acetic acid (NCS-382) appear unchanged in GABAB(1)-/- compared with wild-type mice, demonstrating that GHB- are distinct from GABAB-binding sites. In the presence of the GABAB receptor positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol GHB induced functional GTPgamma[35S] responses in brain membrane preparations from wild-type but not GABAB(1)-/- mice. The GTPgamma[35S] responses in wild-type mice were blocked by the GABAB antagonist [3-[[1-(S)-(3,4dichlorophenyl)ethyl]amino]-2-(S)-hydroxy-propyl]-cyclohexylmethyl phosphinic acid hydrochloride (CGP54626) but not by NCS-382. Altogether, these findings suggest that the GHB-induced GTPgamma[35S] responses are mediated by GABAB receptors. Following GHB or GBL application, GABAB(1)-/- mice showed neither the hypolocomotion, hypothermia, increase in striatal dopamine synthesis nor electroencephalogram delta-wave induction seen in wild-type mice. It, therefore, appears that all studied GHB effects are GABAB receptor dependent. The molecular nature and the signalling properties of the specific [3H]GHB-binding sites remain elusive.
Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.