Knudsen Effusion Mass Spectrometry (KEMS) was used to find the solid state vapor pressures of a range of atmospherically relevant organic molecules from 298 K to 333 K. The selection of species analyzed allowed for the effect of structural isomerism, specifically positional isomerism, and stereoisomerism, specifically geometric isomerism, on solid state vapor pressure to be investigated. In addition, the effect of varying the number of carboxylic acid groups present within a molecule's structure and of varying alkyl chain length was assessed. The solid state vapor pressures were converted to subcooled liquid vapor pressures using experimental heat of fusion and melting point values. The resulting subcooled liquid vapor pressures were found to be up to 7 orders of magnitude lower than the vapor pressures estimated from models. Some of this variation between experimentally determined subcooled liquid vapor pressures and predicted vapor pressures, which use group contribution methods, can be attributed to the effects of isomerism which are largely not taken into account in models. Whilst these techniques might have both structural and parametric uncertainties, of the compound classes tested, a general inverse relationship between melting point and solid state vapor pressure was observed. Within each compound class the variations in vapor pressure can be attributed to the number and size of functional groups present and the relative positions of those functional groups to each other both positionally and geometrically. These two factors impact upon both the molecules' dipole moments and upon their ability to interact both intramolecularly and intermolecularly via hydrogen bonding, thus explaining the differences in observed vapor pressure. Partitioning calculations using a range of condensed mass loadings show that whilst using vapor pressure values derived from models would put most of the compounds in the vapor phase, using the experimental values obtained here would mean a significant fraction of the organic molecules would be in the condensed phase. This could have a significant impact upon the formation and nature of atmospheric aerosol, and comparisons with ambient data obtained from other mass spectrometry techniques during bonfire night in Manchester in 2016 are made in an attempt to assess this potential atmospheric importance.
Abstract. Knudsen effusion mass spectrometry (KEMS) was used to measure the solid state saturation vapour pressure (PSsat) of a range of atmospherically relevant nitroaromatic compounds over the temperature range from 298 to 328 K. The selection of species analysed contained a range of geometric isomers and differing functionalities, allowing for the impacts of these factors on saturation vapour pressure (Psat) to be probed. Three subsets of nitroaromatics were investigated: nitrophenols, nitrobenzaldehydes and nitrobenzoic acids. The PSsat values were converted to subcooled liquid saturation vapour pressure (PLsat) values using experimental enthalpy of fusion and melting point values measured using differential scanning calorimetry (DSC). The PLsat values were compared to those estimated by predictive techniques and, with a few exceptions, were found to be up to 7 orders of magnitude lower. The large differences between the estimated PLsat and the experimental values can be attributed to the predictive techniques not containing parameters to adequately account for functional group positioning around an aromatic ring, or the interactions between said groups. When comparing the experimental PSsat of the measured compounds, the ability to hydrogen bond (H bond) and the strength of the H bond formed appear to have the strongest influence on the magnitude of the Psat, with steric effects and molecular weight also being major factors. Comparisons were made between the KEMS system and data from diffusion-controlled evaporation rates of single particles in an electrodynamic balance (EDB). The KEMS and the EDB showed good agreement with each other for the compounds investigated.
Mechanistic understanding of competitive destabilization of carbamazepine:nicotinamide and carbamazepine:saccharin cocrystals under solvent free conditions has been investigated. The crystal phase transformations were monitored using hot stage microscopy, variable-temperature powder X-ray diffraction, and sublimation experiments. The destabilization of the two cocrystals occurs via two distinct mechanisms: vapor and eutectic phase formations. Vapor pressure measurements and thermodynamic calculations using fusion and sublimation enthalpies were in good agreement with experimental findings. The mechanistic understanding is important to maintain the stability of cocrystals during solvent free green manufacturing.
The main objective of this research is to investigate both the mechanism and the kinetics of solvent-free destabilization of the model caffeine/malonic acid cocrystal (CA/MO 2:1) in the presence of oxalic acid (OX) as a structural competitor to malonic acid (MO). Competitive destabilization of CA/MO and subsequent formation of caffeine/oxalic acid (CA/OX) take place at temperatures significantly below their melting points. The destabilization mechanism was found to be mediated by sublimation of both CA/MO and OX. During CA/MO destabilization, free CA could not be detected, and direct transformation to the CA/OX cocrystal was observed. The destabilization kinetics follow Prout–Tompkins nucleation and the crystal growth model with an activation energy of 133.91 kJ/mol, and subsequent CA/OX growth kinetics follow Ginstling–Brounshtien and three-dimensional diffusion models with an activation energy range of 130.45–132.57 kJ/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.