Explaining the nature of the E-O chemical bond (E = Si, Ge, Sn) has been a great challenge for theoretical chemists during the last decades. Among the large number of models used for this purpose, the one based on hyperconjugative interactions sheds more light on the nature of chemical bonding in siloxanes. Starting from this concept, this study aimed to evaluate the impact of siloxane type hyperconjugative effects on the structural features of germoxanic and stannoxanic species and in addition to assess if p-d-like back-bonding interactions can also play important roles in determining the particular structures of these heavier analogues of ethers. Natural bond orbital deletion (NBO DEL) optimizations, carried out at the DFT level of theory, revealed that hyperconjugative effects dictate to a large extent the structural behavior of these species. Furthermore, this study points out that p-d back-bonding interactions also influence the equilibrium geometry of these species, although acting as a secondary electronic effect within the E-O-E moieties (E = Si, Ge, Sn).
The synthesis and characterization of an E2 CE2 bis-sulfonyl aryl pincer ligand and its efficiency for the stabilization of compounds containing low-valent Group 14 elements (Ge and Sn) are reported. Complexation reaction of these metallylenes with iron or tungsten complexes resulted in the modulation of the oxygen atoms of the sulfonyl groups implicated in the stabilization of the Group 14 elements, demonstrating the original adjustable character of the bis-sulfonyl O2 S-C-SO2 aryl pincer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.