Introduction
Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a “Holy Grail” of AD research and intensively sought; however, there are no well-established plasma markers.
Methods
A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed.
Results
Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71).
Discussion
Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation.
Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.
Introduction:
A critical and as-yet unmet need in Alzheimer’s disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers.
Methods:
This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis.
Results:
Eight metabolites were associated with amyloid b and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory.
Discussion:
PFAMs have been found increased and associated with amyloid b burden in CSF and clinical measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.