This paper examines a novel approach of corrosion damage analysis based on image processing for quantitative and qualitative evaluation of degradation effects on stone surfaces. This methodology can be applied in situ in association with a variety of nondestructive monitoring schemes, and on images acquired from several imaging modalities, capturing from micro-to macro-scale characteristics. Our analysis methodology was evaluated on three non-destructive monitoring techniques of cleaned and not cleaned stone surfaces, namely on digital camera, reflectography and fiber optic microscope images. Further to validating the potential of the various imaging modalities, the paper also assesses the corrosion rate and the efficiency of the recruited cleaning methods. The derived results are in accordance with chemical analyses revealing the deterioration patterns of the studied surfaces. r
The main goal of the H2020-CARAMEL project is to address the cybersecurity gaps introduced by the new technological domains adopted by modern vehicles applying, among others, advanced Artificial Intelligence and Machine Learning techniques. As a result, CARAMEL enhances the protection against threats related to automated driving, smart charging of Electric Vehicles, and communication among vehicles or between vehicles and the roadside infrastructure. This work focuses on the latter and presents the CARAMEL architecture aiming at assessing the integrity of the information transmitted by vehicles, as well as at improving the security and privacy of communication for connected and autonomous driving. The proposed architecture includes: (1) multi-radio access technology capabilities, with simultaneous 802.11p and LTE-Uu support, enabled by the connectivity infrastructure; (2) a MEC platform, where, among others, algorithms for detecting attacks are implemented; (3) an intelligent On-Board Unit with anti-hacking features inside the vehicle; (4) a Public Key Infrastructure that validates in real-time the integrity of vehicle’s data transmissions. As an indicative application, the interaction between the entities of the CARAMEL architecture is showcased in case of a GPS spoofing attack scenario. Adopted attack detection techniques exploit robust in-vehicle and cooperative approaches that do not rely on encrypted GPS signals, but only on measurements available in the CARAMEL architecture.
The evolution of automotive technology will eventually permit the automated driving system on the vehicle to handle all circumstances. Human occupants will be just passengers. This poses security issues that need to be addressed. This paper has two aims. The first one investigates strategies for robustifying scene analysis of adversarial road scenes. A taxonomy of the defense mechanisms for countering adversarial perturbations is initially presented, classifying those mechanisms in three major categories: those that modify the data, those that propose adding extra models, and those that focus on modifying the models deployed for scene analysis. Motivated by the limited number of surveys in the first category, we further analyze the approaches that utilize input transformation operations as countermeasures, further classifying them in supervised and unsupervised methods and highlighting both their strengths and weaknesses. The second aim of this paper is to publish CarlaScenes dataset produced using the CARLA simulator. An extensive evaluation study, on CarlaScenes, is performed testing the supervised deep learning approaches that have been either proposed for image restoration or adversarial noise removal. The study presents insights on the robustness of the aforementioned approaches in mitigating adversarial attacks in scene analysis operations.INDEX TERMS Countering adversarial images, robust road scene analysis, deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.