Wastewater based epidemiology (WBE) is increasingly used to provide decision makers with actionable data about community health. WBE efforts to date have primarily focused on sewer-transported wastewater in high-income countries, but at least 1.8 billion people in low- and middle-income countries (LMIC) use onsite sanitation systems such as pit latrines and septic tanks. Like wastewater, fecal sludges from such systems offer similar advantages in community pathogen monitoring and other epidemiological applications. To evaluate the distribution of enteric pathogens inside pit latrines–which could inform sampling methods for WBE in LMIC settings unserved by sewers–we collected fecal sludges from the surface, mid-point, and maximum-depth of 33 pit latrines in urban and peri-urban Malawi and analyzed the 99 samples for 20 common enteric pathogens via multiplex quantitative reverse transcription PCR. Using logistic regression adjusted for household population, latrine sharing, the presence of a concrete floor or slab, water source, and anal cleansing materials, we found no significant difference in the odds of detecting the 20 pathogens from the mid-point (adjusted odds ratio, aOR = 1.1; 95% confidence interval = 0.73, 1.6) and surface samples (aOR = 0.80, 95% CI = 0.54, 1.2) compared with those samples taken from the maximum depth. Our results suggest that, for the purposes of routine pathogen monitoring, pit latrine sampling depth does not strongly influence the odds of detecting enteric pathogens by molecular methods. A single sample from the pit latrines’ surface, or a composite of surface samples, may be preferred as the most recent material contributed to the pit and may be easiest to collect.
Glycoconjugates are known to be involved in many physiological events in vertebrates. Sialidase is one of the glycosidases, which removes sialic acid from glycoconjugates. In mammals, the properties and physiological functions of sialidases have been investigated, while there is little understanding of fish sialidase. Here, to investigate the significance of fish neu4 sialidase, neu4 gene was cloned from medaka brain mRNA and identified. Sialidase-specific motifs (GPG, YRVP and Asp-Box) were well conserved in the medaka neu4 polypeptide. Optimal pH of medaka neu4 sialidase was 4.6, but its activity was sustained even at neutral and weak alkaline pH. The neu4 considerably cleaved sialic acid from 4-methylumbelliferyl-N-acetyl-α-D-neuraminic acid and sialyllactose, but not from ganglioside and fetuin, which are good substrates for human NEU4. neu4 activity was mostly detected in mitochondria/lysosome fraction after biochemical fractionation, and indirect immunofluorescence assays revealed neu4 localization in lysosome in neu4 overexpressed cells. Next, developmental change in medaka neu4 and other sialidase mRNA levels were estimated by real-time PCR. Each sialidases showed different expression patterns in embryonic development: neu4 was up-regulated at late developmental stage in embryo, and neu3a mRNA level was quite high in 0.5 dpf. On the other hand, neu3b expression was drastically increased after hatching, suggesting that each sialidase may play a different role in embryonic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.