Three mammalian hyaluronan synthase genes, HAS1, HAS2, and HAS3, have recently been cloned. In this study, we characterized and compared the enzymatic properties of these three HAS proteins. Expression of any of these genes in COS-1 cells or rat 3Y1 fibroblasts yielded de novo formation of a hyaluronan coat. The pericellular coats formed by HAS1 transfectants were significantly smaller than those formed by HAS2 or HAS3 transfectants. Kinetic studies of these enzymes in the membrane fractions isolated from HAS transfectants demonstrated that HAS proteins are distinct from each other in enzyme stability, elongation rate of HA, and apparent K m values for the two substrates UDPGlcNAc and UDP-GlcUA. Analysis of the size distributions of hyaluronan generated in vitro by the recombinant proteins demonstrated that HAS3 synthesized hyaluronan with a molecular mass of 1 ؋ 10 5 to 1 ؋ 10 6 Da, shorter than those synthesized by HAS1 and HAS2 which have molecular masses of 2 ؋ 10 5 to ϳ2 ؋ 10 6 Da. Furthermore, comparisons of hyaluronan secreted into the culture media by stable HAS transfectants showed that HAS1 and HAS3 generated hyaluronan with broad size distributions (molecular masses of 2 ؋ 10 5 to ϳ2 ؋ 10 6 Da), whereas HAS2 generated hyaluronan with a broad but extremely large size (average molecular mass of >2 ؋ 10 6 Da). The occurrence of three HAS isoforms with such distinct enzymatic characteristics may provide the cells with flexibility in the control of hyaluronan biosynthesis and functions. Hyaluronan (HA)1 is a major component of most extracellular matrices, particularly in tissues with rapid cell proliferation and cell migration (1). The interaction of HA with various HA-binding proteins and cell-surface receptors plays important roles in regulating fundamental cell behaviors such as cell adhesion, migration, and differentiation (2, 3). Thus, HA has been greatly implicated in morphogenesis, regeneration, wound healing, tumor invasion, and cancer metastasis (4 -6). In addition, HA is an important structural molecule required for the maintenance of various aspects of tissue architecture and function. The physical and biological properties of HA appear to be affected by many factors including HA concentration and chain length. Indeed, high molecular weight HA at high concentrations suppresses endothelial cell growth, whereas low molecular weight HA stimulated cell growth leading to induction of angiogenesis (7). In addition, viscosity of the HA gel and the ability to hydrate large amounts of water were shown to be dependent on the molecular size of the HA chain.HA is a high molecular weight linear polymer composed of GlcUA -1,3-GlcNAc -1,4 disaccharide units and is synthesized by HA synthase at the inner face of the plasma membrane (8). Although a great deal of effort has been made to elucidate the mechanism of HA biosynthesis in mammalian cells, it has remained unclear due to difficulty in biochemical isolation of the active enzyme (9 -11). Recently, three distinct yet highly conserved genes encoding mammali...
Recent advances in developmental biology, systems biology, and network science are converging to poise the heretofore largely empirical field of tissue engineering on the brink of a metamorphosis into a rigorous discipline based on universally accepted engineering principles of quality by design. Failure of more simplistic approaches to the manufacture of cell-based therapies has led to increasing appreciation of the need to imitate, at least to some degree, natural mechanisms that control cell fate and differentiation. The identification of many of these mechanisms, which in general are based on cell signaling pathways, is an important step in this direction. Some well-accepted empirical concepts of developmental biology, such as path-dependence, robustness, modularity, and semiautonomy of intermediate tissue forms, that appear sequentially during tissue development are starting to be incorporated in process design.
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.