The Internet of Things (IoT) can enable smart infrastructures to provide advanced services to the users. New technological advancement can improve our everyday life, even simple tasks as a visit to the museum. In this paper, an indoor localization system is presented, to enhance the user experience in a museum. In particular, the proposed system relies on Bluetooth Low Energy (BLE) beacons proximity and localization capabilities to automatically provide the users with cultural contents related to the observed artworks. At the same time, an RSS-based technique is used to estimate the location of the visitor in the museum. An Android application is developed to estimate the distance from the exhibits and collect useful analytics regarding each visit and provide a recommendation to the users. Moreover, the application implements a simple Kalman filter in the smartphone, without the need of the Cloud, to improve localization precision and accuracy. Experimental results on distance estimation, location, and detection accuracy show that BLE beacon is a promising solution for an interactive smart museum. The proposed system has been designed to be easily extensible to the IoT technologies and its effectiveness has been evaluated through experimentation.
The quality and safety of food is an important issue to the whole society, since it is at the basis of human health, social development and stability. Ensuring food quality and safety is a complex process, and all stages of food processing must be considered, from cultivating, harvesting and storage to preparation and consumption. However, these processes are often labour-intensive. Nowadays, the development of machine vision can greatly assist researchers and industries in improving the efficiency of food processing. As a result, machine vision has been widely used in all aspects of food processing. At the same time, image processing is an important component of machine vision. Image processing can take advantage of machine learning and deep learning models to effectively identify the type and quality of food. Subsequently, follow-up design in the machine vision system can address tasks such as food grading, detecting locations of defective spots or foreign objects, and removing impurities. In this paper, we provide an overview on the traditional machine learning and deep learning methods, as well as the machine vision techniques that can be applied to the field of food processing. We present the current approaches and challenges, and the future trends.
The interconnectedness of all things is continuously expanding which has allowed every individual to increase their level of interaction with their surroundings. Internet of Things (IoT) devices are used in a plethora of context-aware application such as Proximity-Based Services (PBS), and Location-Based Services (LBS). For these systems to perform, it is essential to have reliable hardware and predict a user's position in the area with high accuracy in order to differentiate between individuals in a small area. A variety of wireless solutions that utilize Received Signal Strength Indicators (RSSI) have been proposed to provide PBS and LBS for indoor environments, though each solution presents its own drawbacks. In this work, Bluetooth Low Energy (BLE) beacons are examined in terms of their accuracy in proximity estimation. Specifically, a mobile application is developed along with three Bayesian filtering techniques to improve the BLE beacon proximity estimation accuracy. This includes a Kalman filter, a particle filter, and a Non-parametric Information (NI) filter. Since the RSSI is heavily influenced by the environment, experiments were conducted to examine the performance of beacons from three popular vendors in two different environments. The error is compared in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). According to the experimental results, Bayesian filters can improve proximity estimation accuracy up to 30% in comparison with traditional filtering, when the beacon and the receiver are within 3 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.