We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.
We have observed filamentation due to azimuthal modulational instabilities in spinning ring solitons with orbital angular momentum m variant Planck's over 2pi in sodium vapor. We show experimentally that vortex beams with m values of 1, 2, and 3 tend to break into two, four, and six filaments, respectively. Treating the sodium vapor as a Doppler broadened two-level atomic system, we find that we can accurately model the propagation and breakup of these beams with numerical simulations.
We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, "blurred") speckle patterns, as long as the collected signal variation is predominantly caused by the random fluctuation of the incident speckle field rather than other noise sources. In our experimental study, we show that the quality of the ghost image is not degraded when as many as 25 speckle patterns are averaged together for each measurement. This surprising result comes from the fact that the averaging of speckle patterns leads to a decrease in the contrast but not in the kurtosis, and the image quality of a ghost imaging system is dependent on the kurtosis rather than the contrast ratio of the illuminating field. These results suggest that a broad class of imaging systems based on the use of speckle techniques can be implemented even using detectors that respond slowly on the time scale of the fluctuating speckle pattern.
The origin and mechanism of backward stimulated Rayleigh scattering in two-photon absorbing media are studied theoretically and experimentally. This type of stimulated scattering has the unusual features of no frequency shift and low pump threshold requirement compared to all other known stimulated scattering effects. This frequency-unshifted stimulated Rayleigh scattering effect can be well explained by a two-photonexcitation-enhanced Bragg grating reflection model. The reflection of the forward pump beam from this stationary Bragg grating may substantially enhance the backward Rayleigh scattering beam, providing a positive feedback mechanism without causing any frequency shift. A two-counterpropagating-beam-formed grating experiment in a two-photon absorbing dye solution is conducted. The measured dynamic behavior of Bragg grating formation and reflectivity properties are basically consistent with the predictions from the proposed model.
We can encode an image from an orthogonal basis set onto a single photon from a downconverted pair via the use of an amplitude mask. We can then discriminate the image imprinted on the photon from other images in the set using holographic-matched filtering techniques. We demonstrate this procedure experimentally for an image space of two objects, and we discuss the possibility of applying this method to a much larger image space. This process could have important implications for the manipulation of images at the quantum level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.