aMetal organic chemical vapor deposition is carefully optimized for the growth of pure CuCrO 2 delafossite coatings on glass substrates. The pulsed direct liquid delivery is demonstrated to be an efficient process technology for the controlled supply of the precursor solution in the evaporation chamber, which is shown to be one of the main process parameters to tailor the thin-film properties.We investigated the influence of the precursor concentration ratio Cu(thd) 2 (bis[2,2,6,6-tetramethyl-3,5-heptanedionato]copper(II)) and Cr(thd) 3 (tris[2,2,6,6-tetramethyl-3,5-heptanedionato]chromium(III)) on the crystal structure, morphology and electrical conductivity, at a reduced temperature of 370 1C. We observe for a low ratio, a pure delafossite phase with a constant Cu-poor/Cr-rich chemical composition, while at a high ratio a mixture of copper oxides and CuCrO 2 was found. The as-grown 140 nm-thick pure delafossite films exhibit an exceptional high electrical conductivity for a non-intentionally doped CuCrO 2 ,
S cm
À1, and a near 50% transparency in the visible spectral range.
We report on the experimental observation and theoretical study of the bound state resonances in fast atom diffraction at surfaces. In our studies, the 4He atom beam has been scattered from a high-quality LiF(001) surface at very small grazing incidence angles. In this regime, the reciprocal lattice vector exchange with the surface allows transient trapping of the 0.3-0.5 keV projectiles into the quasistationary states bound by the attractive atom-surface potential well which is only 10 meV deep. Analysis of the linewidths of the calculated and measured resonances reveals that prior to their release, the trapped projectiles preserve their coherence over travel distances along the surface as large as 0.2 μm, while being in average only at some angstroms in front of the last atomic plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.