The price of rare-earth metals used in neodymium-iron-boron (NdFeB) permanent magnets (PMs) has fluctuated greatly recently. Replacing the NdFeB PMs with more abundant ferrite PMs will avoid the cost insecurity and insecurity of supply. Ferrite PMs have lower performance than NdFeB PMs and for similar performance more PM material has to be used, requiring more support structure. Flux concentration is also necessary, for example, by a spoke-type rotor. In this paper the rotor of a 12 kW NdFeB PM generator was redesigned to use ferrite PMs, reusing the existing stator and experimental setup. Finite element simulations were used to calculate both electromagnetic and mechanical properties of the design. Focus was on mechanical design and feasibility of construction. The result was a design of a ferrite PM rotor to be used with the old stator with some small changes to the generator support structure. The new generator has the same output power at a slightly lower voltage level. It was concluded that it is possible to use the same stator with either a NdFeB PM rotor or a ferrite PM rotor. A ferrite PM generator might require a larger diameter than a NdFeB generator to generate the same voltage.
Due to the price and supply insecurities for rare earth metal-based permanent magnet (PM) materials, a search for new PM materials is ongoing. The properties of a new PM material are not known yet, but a span of likely parameters can be studied. This paper presents an investigation on how the remanence and recoil permeability of a PM material affect its usefulness in a low speed, multi-pole, and PM synchronous generator. Demagnetisation is also considered. The investigation is carried out by constrained optimisation of three different rotor topologies for maximum torque production for different PM material parameters and a fixed PM maximum energy. The rotor topologies used are surface mounted PM rotor, spoke type PM rotor and an interior PM rotor with radially magnetised PMs. The three different rotor topologies have their best performance for different kinds of materials. The spoke type PM rotor is the best at utilising low remanence materials as long as they are sufficiently resistant to demagnetisation. The surface mounted PM rotor works best with very demagnetisation resistant PM materials with a high remanence, while the radial interior PM rotor is preferable for high remanence materials with low demagnetisation resistance.interact with the demagnetisation magnetic flux density curve. Different rotor topologies have been studied previously. In [13], three topologies, similar to those studied here, are compared for use in 4-pole traction motors for trains. Similar topologies are compared for use as an aircraft starter-generator in [14]. Five different topologies, not including the spoke-type rotor, are compared in [15]. Ref. [16] also compares five different topologies, including the spoke-type rotor. Ref.[17] compares machines with Nd-Fe-B, Sm-Co and alnico for surface mounted 4-pole machines. Ref.[18] compares three machine configurations for interior v-shaped magnets for two different materials: the novel material NdFe 12 N x and a conventional Nd-Fe-B magnet. A spoke-type rotor with ferrites is compared to a rotor with surface mounted Nd-Fe-B magnets for a wind power generator in [19,20]. A comparison of demagnetization risk for the same generator types is presented in [21].The aim of this paper is to study how the magnetic properties of PM materials affect the machine design in low-speed radial flux PM generators. To our knowledge, there has not been any previous study combining material properties with rotor design and rotor topology choice. The results from this study could give hints on which property to improve when developing new PM materials as well as on the suitability of a material with certain magnetic properties for different generator topologies.
Ways to utilise ferrite permanent magnets (PMs), in a better way has been in focus the last couple of years since the use of neodymium-iron-boron (NdFeB) PMs has been debated. While ferrite PMs offer a low-cost alternative to rareearth PMs, it is a trade-off for lower energy density. Depending on the type of PM and if the PMs are surface mounted or buried, the risk of demagnetisation during a fault condition can vary significantly between machines. In this study, the demagnetisation risk of two electrically similar generators with identical stators has been studied during several shortcircuit faults at different temperatures. The study is simulation-based, and the results show that the generator with the ferrite rotor will suffer from a small but not significant amount of demagnetisation in the worst, three-phase-neutral, short-circuit case at a temperature of 5°C, whereas the NdFeB PMs will suffer from partial demagnetisation if a fault occurs at 120°C. For operational temperatures between 20 and 60°C both generators will sustain a short-circuit event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.