Abstract. Registration uncertainty may be important information to convey to a surgeon when surgical decisions are taken based on registered image data. However, conventional non-rigid registration methods only provide the most likely deformation. In this paper we show how to determine the registration uncertainty, as well as the most likely deformation, by using an elastic Bayesian registration framework that generates a dense posterior distribution on deformations. We model both the likelihood and the elastic prior on deformations with Boltzmann distributions and characterize the posterior with a Markov Chain Monte Carlo algorithm. We introduce methods that summarize the high-dimensional uncertainty information and show how these summaries can be visualized in a meaningful way. Based on a clinical neurosurgical dataset, we demonstrate the importance that uncertainty information could have on neurosurgical decision making.
In settings where high-level inferences are made based on registered image data, the registration uncertainty can contain important information. In this article, we propose a Bayesian non-rigid registration framework where conventional dissimilarity and regularization energies can be included in the likelihood and the prior distribution on deformations respectively through the use of Boltzmann’s distribution. The posterior distribution is characterized using Markov Chain Monte Carlo (MCMC) methods with the effect of the Boltzmann temperature hyper-parameters marginalized under broad uninformative hyper-prior distributions. The MCMC chain permits estimation of the most likely deformation as well as the associated uncertainty. On synthetic examples, we demonstrate the ability of the method to identify the maximum a posteriori estimate and the associated posterior uncertainty, and demonstrate that the posterior distribution can be non-Gaussian. Additionally, results from registering clinical data acquired during neurosurgery for resection of brain tumor are provided; we compare the method to single transformation results from a deterministic optimizer and introduce methods that summarize the high-dimensional uncertainty. At the site of resection, the registration uncertainty increases and the marginal distribution on deformations is shown to be multi-modal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.