Accurate terrain models are a crucial component of studies of river channel evolution. In this paper we describe a new methodology for creating high-resolution seamless digital terrain models (DTM) of river channels and their floodplains. We combine mobile laser scanning and low-altitude unmanned aerial vehicle (UAV) photography-based methods for creating both a digital bathymetric model of the inundated river channel and a DTM of a point bar of a meandering sub-arctic river. We evaluate mobile laser scanning and UAV-based photogrammetry point clouds against terrestrial laser scanning and combine these data with an optical bathymetric model to create a seamless DTM of two different measurement periods. Using this multi-temporal seamless data, we calculate a DTM of difference that allows a change detection of the meander bend over a one-year period.
We present two improvements for laser-based forest inventory. The first improvement is based on using last pulse data for tree detection. When trees overlap, the surface model between the trees corresponding to the first pulse stays high, whereas the corresponding model from the last pulse results in a drop in elevation, due to its better penetration between the trees. This drop in elevation can be used for separating trees. In a test carried out in Evo, Southern Finland, we used 292 forests plots consisting of more than 5,500 trees and airborne laser scanning (ALS) data comprised of 12.7 emitted laser pulses per m 2 . With last pulse data, an improvement of 6% for individual tree detection was obtained when compared to using first pulse data. The improvement increased with an increasing number of stems per plot and with decreasing diameter breast height (DBH). The results confirm that there is also substantial information for tree detection in last pulse data. The second improvement is based on the use of individual tree-based features in addition to the statistical point height metrics in area-based prediction of forest variables. The commonly-used ALS point height metrics and individual tree-based features were
OPEN ACCESSRemote Sens. 2012, 4 1191 fused into the non-parametric estimation of forest variables. By using only four individual tree-based features, stem volume estimation improved when compared to the use of statistical point height metrics. For DBH estimation, the point height metrics and individual tree-based features complemented each other. Predictions were validated at plot level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.