For a nilpotent Lie algebra L of dimension n and dim(where M (L) denotes the Schur multiplier of L. In case m = 1 the equality holds if and only if L ∼ = H(1) ⊕ A, where A is an abelian Lie algebra of dimension n − 3 and H(1) is the Heisenberg algebra of dimension 3.
We introduce the exterior degree of a finite group G to be the probability for two elements g and g in G such that g ∧ g = 1, and we shall state some results concerning this concept. We show that if G is a non-abelian capable group, then its exterior degree is less than 1/p, where p is the smallest prime number dividing the order of G. Finally, we give some relations between the new concept and commutativity degree, capability, and the Schur multiplier.
In virtue of a recent bound obtained in [P. Niroomand and F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011), 1293--1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich--Zhou)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.