Los Angeles has experienced ground deformations during the past decades. These ground displacements can be destructive for infrastructure and can reduce the land capacity for groundwater storage. Therefore, this paper seeks to evaluate the existing ground displacement patterns along a new metro tunnel in Los Angeles, known as the Sepulveda Transit Corridor. The goal is to find the most crucial areas suffering from subsidence or uplift and to enhance the previous reports in this metropolitan area. For this purpose, we applied a Persistent Scatterer Interferometric Synthetic Aperture Radar using 29 Sentinel-1A acquisitions from June 2017 to May 2018 to estimate the deformation rate. The assessment procedure demonstrated a high rate of subsidence in the Inglewood field that is near the study area of the Sepulveda Transit Corridor with a maximum deformation rate of 30 mm/yr. Finally, data derived from in situ instruments as groundwater level variations, GPS observations, and soil properties were collected and analyzed to interpret the results. Investigation of geotechnical boreholes indicates layers of fine-grained soils in some parts of the area and this observation confirms the necessity of more detailed geotechnical investigations for future constructions in the region. Results of investigating line-of-sight displacement rates showed asymmetric subsidence along the corridor and hence we proposed a new framework to evaluate the asymmetric subsidence index that can help the designers and decision makers of the project to consider solutions to control the current subsidence.
In this study, effects of applying higher order axial displacement distribution to solve a continuum model for static analysis of the combined system of framed tube, shear core and outrigger-belt truss system in high-rise buildings are investigated. Framed tube system is modeled using an orthotropic box beam analogy approach and the interaction between shear core and outrigger-belt truss system on framed tube is modeled with rotating spring placed at outrigger-belt truss location. The axial displacement distributions in web and flange panels along structure's height are proposed to be fifth-order and fourth-order polynomials, respectively. Analytic analyses are carried out on the basis of the principle of minimum potential energy. A detailed work is carried out through two numerical examples and the accuracy of proposed approximation functions is compared with previous work and finite element analysis. Results demonstrate that the proposed parametric stress distribution and displacement functions are more accurate than previously proposed functions in comparison with the finite element solution.
SUMMARYIn this article, dynamic parameters (natural frequencies and mode shapes) of tall buildings that consist of framed tube and shear walls are obtained using a simple approximate method. The three-dimensional structure is replaced by an equivalent cantilever beam, considering both bending and shear deformations. On the basis of dynamic equilibrium, the governing differential equation of motion is obtained and converted to its corresponding weak form. B-spline functions are then utilized to approximate the weak form and to obtain the final matrix form of the problem. Finally, by applying essential boundary conditions, the natural frequencies and corresponding mode shapes are calculated. To demonstrate the accuracy of the proposed method, numerical examples are solved, and the results are compared with those obtained from SAP2000 computer analysis. The results show that the proposed method is efficient and accurate enough to be used in preliminary design.
In a framed-tube tall building, shear wall systems are the most efficient structural systems for increasing the lateral load resistance. A novel and simple mathematical model is developed herein which calculates the natural frequencies of such tall buildings. The analyses are based on a continuous model, in which a tall building structure is replaced by an idealized cantilever beam that embodies all relevant structural characteristics. Governing equations and the corresponding eigen-problem are derived based on the energy method and Hamilton’s principle. Solutions are obtained for three examples; using the separation of variables technique implemented in MATLAB. The results are compared to SAP2000 full model analysis; and they indicate reasonable accuracy. The computed natural frequencies for structures 50, 60 and 70 storey buildings were over-estimate 7, 11 and 14 percent respectively. The computed errors indicate that the proposed method has acceptable accuracy; and can be used during the initial stages of designing of tall buildings; it is fast and low cost computational process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.