Polymer thin films doped with azobenzene molecules do have the ability to organize themselves in spontaneous surface relief gratings (SRG) under irradiation using a single polarized beam. To shed some light on this still unexplained phenomenon, we use a new method that permits us to access experimentally the very first steps of the pattern formation process. By decreasing the temperature, we slow down the formation and organization of patterns, due to the large increase in the viscosity and relaxation time of the azopolymer. As a result, decreasing the temperature allows us to access and study much shorter time scales, in the physical mechanisms underlying the pattern formation, than those previously reported. We find that the patterns organize themselves in sub-structures which size increases with the temperature, following the diffusion coefficient evolution of the material. This result suggests that the pattern formation and organization are mainly governed by diffusive processes, in agreement with some theories of SRG formation. Upon decreasing the temperature further, we observe the emergence of small voids located at the junction of the sub-structures.
We exploit the photoinduced migration effect in azopolymer thin films to induce surface relief patterning of nano-objects. Manipulation and precise control of the molecular order is achieved at the nanoscale. Interaction between a laser beam from an argon laser and the azopolymer nano-objects induces structures on the surface. The self-patterning process is observed to depend on the laser beam polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.