Purpose The purpose of this work was twofold: (a) To provide a robust and accurate method for image segmentation of dedicated breast CT (bCT) volume data sets, and (b) to improve Hounsfield unit (HU) accuracy in bCT by means of a postprocessing method that uses the segmented images to correct for the low‐frequency shading artifacts in reconstructed images. Methods A sequential and iterative application of image segmentation and low‐order polynomial fitting to bCT volume data sets was used in the interleaved correction (IC) method. Image segmentation was performed through a deep convolutional neural network (CNN) with a modified U‐Net architecture. A total of 45 621 coronal bCT images from 111 patient volume data sets were segmented (using a previously published segmentation algorithm) and used for neural network training, validation, and testing. All patient data sets were selected from scans performed on four different prototype breast CT systems. The adipose voxels for each patient volume data set, segmented using the proposed CNN, were then fit to a three‐dimensional low‐order polynomial. The polynomial fit was subsequently used to correct for the shading artifacts introduced by scatter and beam hardening in a method termed “flat fielding.” An interleaved utilization of image segmentation and flat fielding was repeated until a convergence criterion was satisfied. Mathematical and physical phantom studies were conducted to evaluate the dependence of the proposed algorithm on breast size and the distribution of fibroglandular tissue. In addition, a subset of patient scans (not used in the CNN training, testing or validation) were used to investigate the accuracy of the IC method across different scanner designs and beam qualities. Results The IC method resulted in an accurate classification of different tissue types with an average Dice similarity coefficient > 95%, precision > 97%, recall > 95%, and F1‐score > 96% across all tissue types. The flat fielding correction of bCT images resulted in a significant reduction in either cupping or capping artifacts in both mathematical and physical phantom studies as measured by the integral nonuniformity metric with an average reduction of 71% for cupping and 30% for capping across different phantom sizes, and the Uniformity Index with an average reduction of 53% for cupping and 34% for capping. Conclusion The validation studies demonstrated that the IC method improves Hounsfield Units (HU) accuracy and effectively corrects for shading artifacts caused by scatter contamination and beam hardening. The postprocessing approach described herein is relevant to the broad scope of bCT devices and does not require any modification in hardware or existing scan protocols. The trained CNN parameters and network architecture are available for interested users.
Purpose: Clinical use of dedicated breast computed tomography (bCT) requires relatively short scan times necessitating systems with high frame rates. This in turn impacts the x-ray tube operating range. We characterize the effects of tube voltage, beam filtration, dose, and object size on contrast and noise properties related to soft tissue and iodine contrast agents as a way to optimize imaging protocols for soft tissue and iodine contrast at high frame rates. Methods: This study design uses the signal-difference-to-noise ratio (SDNR), noise-equivalent quanta (NEQ), and detectability (d´) as measures of imaging performance for a prototype breast CT scanner that utilizes a pulsed x-ray tube (with a 4 ms pulse width) at 43.5 fps acquisition rate. We assess a range of kV, filtration, breast phantom size, and mean glandular dose (MGD). Performance measures are estimated from images of adipose-equivalent breast phantoms machined to have a representative size and shape of small, medium, and large breasts. Water (glandular tissue equivalent) and iodine contrast (5 mg/ml) were used to fill two cylindrical wells in the phantoms. Results: Air kerma levels required for obtaining an MGD of 6 mGy ranged from 7.1 to 9.1 mGy and are reported across all kV, filtration, and breast phantom sizes. However, at 50 kV, the thick filters (0.3 mm of Cu or Gd) exceeded the maximum available mA of the x-ray generator, and hence, these conditions were excluded from subsequent analysis. There was a strong positive association between measurements of SDNR and d' (R 2 > 0.97) within the range of parameters investigated in this work. A significant decrease in soft tissue SDNR was observed for increasing phantom size and increasing kV with a maximum SDNR at 50 kV with 0.2 mm Cu or 0.2 mm Gd filtration. For iodine contrast SDNR, a significant decrease was observed with increasing phantom size, but a decrease in SDNR for increasing kV was only observed for 70 kV (50 and 60 kV were not significantly different). Thicker Gd filtration (0.3 mm Gd) resulted in a significant increase in iodine SDNR and decrease in soft tissue SDNR but requires significantly more tube current to deliver the same MGD. Conclusions: The choice of 60 kV with 0.2 mm Gd filtration provides a good trade-off for maximizing both soft tissue and iodine contrast. This scanning technique takes advantage of the~50 keV Gd k-edge to produce contrast and can be achieved within operating range of the x-ray generator used in this work. Imaging at 60 kV allows for a greater range in dose delivered to the large breast sizes when uniform image quality is desired across all breast sizes. While imaging performance metrics (i.e., detectability index and SDNR) were shown to be strongly correlated, the methodologies presented in this work for the estimation of NEQ (and subsequently d') provides a meaningful description of the spatial resolution and noise characteristics of this prototype bCT system across a range of beam quality, dose, and object sizes.
The inadequate visibility of microcalcifications—small calcium deposits that cue radiologists to early stages of cancer—is a major limitation in current designs of dedicated breast computed tomography (bCT). This limitation has previously been attributed to the constituent components, spatial resolution, and utilized dose. Scattered radiation has been considered an occurrence with low-frequency impacts that can be compensated for in post-processing. We hypothesized, however, that the acquisition of scattered radiation has a far more detrimental impact on clinically relevant features than has previously been understood. Critically, acquisition of scatter leads to the reduced visibility of microcalcifications. This hypothesis was investigated and supported via mathematical derivations and simulation studies. We conducted a series of comparative studies in which four bCT systems were simulated under iso-dose and iso-resolution conditions, characterizing the dependencies of microcalcification contrast on accumulated scatter. Included among the simulated systems is a novel bCT design—narrow beam bCT (NB-bCT)—that captures nearly zero scatter. We find that current bCT systems suffer from significant levels of scatter. As validated in theory, depending on the system and size of microcalcifications, between 25% and over 70% of contrast resolution is lost due to scatter. The results in NB-bCT, however, provide evidence that by removing scatter build-up in projections, the contrast of microcalcifications in a bCT image is preserved, regardless of their size or location in the breast.
Purpose: To introduce an auxiliary apparatus of fluence modulation and scatter shielding for dedicated breast computed tomography (bCT) and the corresponding patient-specific method of image acquisition. Methods: The apparatus is composed of two assemblies, referred to herein as the "Dynamic Fluence Gate" (FG) and "Scatter Shield" (SS), that work in synchrony to form a narrow beam sweeping the entire fan angle coverage of the imaging system during a projection. The apparatus, as a whole, is referred to as FG-SS. FG and SS are pre-patient and post-patient units, respectively. Each is composed of a rotating drum, on top of which are installed two sheets of high x-ray attenuating material, a sensory system, and the constituent robotics. The sheets of each unit are positioned such that an openinga window Fluence Modulation and Scatter Shielding is formed between them. The rotations of the drums and positioning of the sheets are synchronized and adjusted such that a line of sight is created between the source, FG window, the breast, and the SS window. With line of sight achieved, the narrow beam transitions from the source to the detector. The fluence of the narrow beam during a projection depends on the size, shape, and positioning of the breast. The FG-SS method of imaging is discussed mathematically and demonstrated using computer simulations. A series of Monte Carlo simulations are conducted to evaluate the performance of the system as relates to its impact on the imager's dynamic range, dose distribution to the breast, noise inhomogeneity in reconstructed images, and scatter buildup in projections within small, medium, and large breasts composed of homogeneous medium breast tissue. Results: Implementation of FG-SS results in near scatter-free projections, reduction in both dose and the required dynamic range of the imager, and equalization of the quantum noise distribution in the reconstructed image. Using the disclosed design, the dynamic range was reduced by factors ranging from 1.6 to 5.5 across the range of breast sizes studied. A reduction in the acquisition of the scattered rays, varying between the factors of 6.1 (in the small breast) and 9.8 (in that large breast) was achieved and consequently, shading artifacts were suppressed. Noise in the CT image was equalized by reducing the overall spatial variation from 29% to <5% in small breast and from 45% to 14% in the large breast. An overall reduction in deposited dose to the breast was achievedbetween 26% and 39% depending on the breast size. Conclusions: Utilization of the FG-SS apparatus and technique was demonstrated via simulations to result in: significant reductions in dose to the breast, reductions in scatter uptake in projections, reduced required dynamic range of the imager, and homogenizing of quantum noise throughout the reconstructed image.
In cone-beam breast CT, scattered photons form a large portion of the acquired signal, adversely impacting image quality throughout the frequency response of the imaging system. Prior simulation studies provided proof of concept for utilization of a hardware solution to prevent scatter acquisition. Here, we report the design, implementation, and characterization of an auxiliary apparatus of fluence modulation and scatter shielding that does indeed lead to projections with a reduced level of scatter. Methods: An apparatus was designed for permanent installation within an existing cone-beam CT system. The apparatus is composed of two primary assemblies: a "Fluence Modulator" (FM) and a "Scatter Shield" (SS). The design of the assemblies enables them to operate in synchrony during image acquisition, converting the sourced x-rays into a moving narrow beam. During a projection, this narrow beam sweeps the entire fan angle coverage of the imaging system. As the two assemblies are contingent on one another, their joint implementation is described in the singular as apparatus FM-SS. The FM and the SS assemblies are each comprised a metal housing, a sensory system, and a robotic system. A controller unit handles their relative movements. A series of comparative studies were conducted to evaluate the performance of a cone-beam CT system in two "modes" of operation: with and without FM-SS installed, and to compare the results of physical implementation with those previously simulated. The dynamic range requirements of the utilized detector in the cone-beam CT imaging system were first characterized, independent of the mode of operation. We then characterized and compared the spatial resolution of the imaging system with, and without, FM-SS. A physical breast phantom, representative of an average size breast, was developed and imaged. Actual differences in signal level obtained with, versus without, FM-SS were then compared to the expected level gains based on previously reported simulations. Following these initial assessments, the scatter acquisition in each projection in both modes of operation was investigated. Finally, as an initial study of the impact of FM-SS on radiation dose in an average size breast, a series of Monte Carlo simulations were coupled with physical measurements of air kerma, with and without FM-SS. Results: With implementation of FM-SS, the detector's required dynamic range was reduced by a factor of 5.5. Substantial reduction in the acquisition of the scattered rays, by a factor of 5.1 was achieved. With the implementation of FM-SS, deposited dose was reduced by 27% in the studied breast. Conclusions: The disclosed implementation of FM-SS, within a cone-beam breast CT system, results in reduction of scatter-components in acquired
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.