Background Malignant melanoma in dogs is considered to be largely resistant to conventional chemotherapy, although responses to carboplatin have been documented. Invasion and early metastasis are common features of certain melanoma subtypes that contribute to tumour progression despite aggressive local and systemic therapy. Upregulation of the PI3K/AKT/mTOR pathway has been observed in canine malignant melanoma and may represent a potential target for therapy. Rapamycin (sirolimus) and everolimus are commercially available small molecule inhibitors that target mTOR and therefore may have anticancer activity in canine melanoma. It was hypothesized that there is synergism between rapamycin or everolimus and platinum chemotherapy, and that combination drug treatment would inhibit target/downstream proteins involved in cell viability/proliferation and increase cell death in canine melanoma cells. It was further hypothesized that rapamycin or everolimus would impact metabolism by reducing glycolysis in these cells. Four canine melanoma cell lines were treated in vitro with rapamycin and everolimus as sole treatment or combined with carboplatin. Cell viability, apoptosis, target modulation, and glycolytic metabolism were evaluated by crystal violet colourimetric assay, Annexin V/PI flow cytometry, western blotting, and Seahorse bioanalyzer, respectively. Results When combined with carboplatin chemotherapy, rapamycin or everolimus treatment was overall synergistic in reducing cell viability. Carboplatin-induced apoptosis was noted at 72 h after treatment compared to the vehicle control. Levels of phosphorylated mTOR were reduced by rapamycin and everolimus in all four cell lines, but activation of the downstream protein p70S6K was not consistently reduced by treatment in two of the cell lines. Both mTOR inhibitors decreased the extracellular acidification rate of canine melanoma cells, indicating reduced cancer cell glycolytic activity. Conclusions Inhibition of mTOR by rapalogs, such as rapamycin and everolimus combined with carboplatin chemotherapy may have activity in canine melanoma. Future mechanistic investigation is warranted, including in vivo assessment of this combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.