This paper presents a dry mechanochemical process to produce hydroxyapatite (HAp) nanoparticles. Two distinct chemical reactions are introduced to prepare HAp powders using milling process. Structural and morphological properties of the obtained materials are studied by X-ray diffraction and transmission electron microscopy. The results reveal that the single crystal HAp nanoparticles have been successfully produced in metallic and polymeric vials through two different experimental procedures. Tempered chrome steel and polyamide-6 materials are adopted as the metallic and polymeric vials respectively. Nanoellipse, nanorod and nanosphere powders are obtained in these experimental procedures. Moreover, the obtained HAp powders through two distinct reactions exhibit average sizes about 12 and 15 nm using the tempered chrome steel vials, and about 16 and 17 nm using the polyamide-6 vials. The results indicate that single crystal HAp nanoparticles produced in polyamide-6 vials have suitable morphology and high production efficiency without any chemically stable contaminations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.