We investigate the unimolecular dissociation dynamics of energy-rich sodium cluster ions, Na+n (5≤n≤40) by measuring the time evolution of their sequential monomer or dimer evaporative cooling. The experimental technique, tandem time-of-flight mass spectroscopy, measures the relative rate of competing dissociation channels from metastable ion clusters selected during an initial sampling time interval immediately following the creation of the ion cluster ensemble. Pulsed laser UV photoionization converts the distribution of neutral clusters emerging from a free-jet expansion to the distribution of ion clusters from which the initial selection takes place. For the smaller clusters, 3≤n≤14, we compare the measured dissociation rates with those calculated from a modified version of the RRK theory of unimolecular dissociation. In applying the theory we use monomer and dimer binding energies determined from theoretical calculation. For larger clusters, 15≤n≤40, the binding energies are not known, and we invert the calculation, using measured dissociation fractions, to determine the binding energies of the cluster ions.
The unimolecular dissociation of energy rich lithium cluster ions shows that Li+n dissociate by sequential atom or dimer loss. The binding energies of Li+n (n=4–42) generated in an evaporative ensemble are determined from unimolecular decay, within a well defined time window, and energy constraint. They present a sawtooth behavior vs cluster size less pronounced that it should be from a simple metal model. Odd–even alternation is superimposed on the sawtooth behavior, with odd sized cluster ions being more stable. Cohesive energies per atom of Li+n are deduced from these dissociation energies up to n=40 and from extended photo-induced measurements up to n=95. Cohesive energies per atom of neutral clusters Lin are derived by combining these ionic cohesive energies with the literature ionization potentials. The linearity of the neutral cluster cohesive energy vs the cluster surface to volume ratio permits a volume and a surface energy to be deduced. These values are compared to the bulk values.
Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials' breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.