Interchange turbulence in two dimensions is investigated in the scrape-off layer (SOL) of fusion devices, when driven by a constant core particle influx. Contrary to the standard gradient-driven approach, density is allowed to fluctuate around its average profile. Transverse transport exhibits some of the features of self-organized critical systems, namely inward and outward avalanches, together with a frequency spectrum decrease in 1/f and f−2 at intermediate and high frequencies, respectively. An avalanche occurs when the local radial density gradient exceeds the critical one. A self-sustained particle flux then follows the large radial structures of the electric potential. As observed experimentally, the radial profile of density relative fluctuations decreases from the wall into the core plasma, while that of electric potential relative fluctuations peaks inside the SOL. Equilibrium density exhibits the experimental exponential decrease. An analytical expression of the SOL width ΔSOL is obtained, which maximizes the linear growth rate, when the poloidal modulation of electric potential equilibrium is taken into account. The parametric dependencies of ΔSOL are compared to experimental data.
A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the " E × B staircase" after its planetary analog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.