Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance I las λ 2 las . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.
Formation of a millimeter-sized spark discharge in ambient air is traced on a nanosecond time scale using multi-frame laser probing with an exposure time of 70 ps and spatial resolution of 3-4 μm. The discharge is initiated by a 25 kV voltage pulse with a rise time of 4 ns, with the pulse applied to the gap formed by a point cathode and flat anode. It is demonstrated that the gap breakdown is accompanied by the fast (∼1 ns) formation of a highly ionized homogeneous spark channel originating from the point cathode. We discover that the fast fine-scale filamentation of the homogeneous spark channel arises several nanoseconds after the breakdown and at some distance from the cathode, which results in a complex filamentary structure of the channel. We find that the growing spark channel, in fact, develops in the form of multiple (N 10) rapidlyevolving filaments that constitute micron-sized (∼10-50 μm) plasma channels with an electron density of -ñ 10 10 e 19 20 cm −3 and subnanosecond characteristic evolution time. First filaments appear at the top of the developing homogenous spark channel. Further, the growing filaments are split themselves, and their number is increased over time up to several tens. Our findings indicate that the fast fine-scale filamentation is one of the important mechanisms governing the spark channel resistance after the breakdown.
An analytical theory of the resonancelike phenomena in high-order above-threshold ionization is presented that explains details of the experimental spectra and theoretical simulations. It traces the observed features to the constructive interference of "quantum orbits" with long travel times at laser intensities where the N-photon ionization channels close. Characteristic differences show up between even and odd N. The effects are generic to all laser-induced recollision phenomena. For nonsequential double ionization, their signature in the momentum distribution of the final electrons is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.