Abstract. When a column generation approach is applied to decomposable mixed integer programming problems, it is standard to formulate and solve the master problem as a linear program. Seen in the dual space, this results in the algorithm known in the nonlinear programming community as the cutting-plane algorithm of Kelley and Cheney-Goldstein. However, more stable methods with better theoretical convergence rates are known and have been used as alternatives to this standard. One of them is the bundle method; our aim is to illustrate its differences with Kelley's method. In the process we review alternative stabilization techniques used in column generation, comparing them from both primal and dual points of view. Numerical comparisons are presented for five applications: cutting stock (which includes bin packing), vertex coloring, capacitated vehicle routing, multi-item lot sizing, and traveling salesman. We also give a sketchy comparison with the volume algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.