This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended-real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second-order subdifferential of such functions that enjoys extensive calculus rules and can be efficiently computed for broad classes of extended-real-valued functions. Based on this and on metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian derivatives (C 1,1 functions), which is the underlying case of our consideration. The developed algorithm for prox-regular functions is formulated in terms of proximal mappings related to and reduces to Moreau envelopes. Besides numerous illustrative examples and comparison with known algorithms for C 1,1 functions and generalized equations, the paper presents applications of the proposed algorithm to the practically important class of Lasso problems arising in statistics and machine learning.
A modified form of the extragradient method for solving infinite-dimensional variational inequalities is considered. The weak convergence and the strong convergence for the iterative sequence generated by this method are studied. We also propose several examples to analyze the obtained results.
This paper proposes and justifies two new globally convergent Newton-type methods to solve unconstrained and constrained problems of nonsmooth optimization by using tools of variational analysis and generalized differentiation. Both methods are coderivative-based and employ generalized Hessians (coderivatives of subgradient mappings) associated with objective functions, which are either of class C 1,1 , or are represented in the form of convex composite optimization, where one of the terms may be extended-real-valued. The proposed globally convergent algorithms are of two types. The first one extends the damped Newton method and requires positive-definiteness of the generalized Hessians for its well-posedness and efficient performance, while the other algorithm is of the Levenberg-Marquardt type being well-defined when the generalized Hessians are merely positive-semidefinite. The obtained convergence rates for both methods are at least linear, but becomes superlinear under the so-called semismooth * property of subgradient mappings. Problems of convex composite optimization are investigated with and without the strong convexity assumption on of smooth parts of objective functions by implementing the machinery of forward-backward envelopes. Numerical experiments are conducted for a basic class of Lasso problems by providing performance comparisons of the new algorithms with some other first-order and second-order methods that are highly recognized in nonsmooth optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.