Non-orthogonal multiple access (NOMA) is considered a potential technique in fifth-generation (5G). Nevertheless, it is relatively complex when applying NOMA to a massive access scenario. Thus, in this paper, a hybrid NOMA/OMA scheme is considered for uplink wireless transmission systems where multiple cognitive users (CUs) can simultaneously transmit their data to a cognitive base station (CBS). We adopt a user-pairing algorithm in which the CUs are grouped into multiple pairs, and each group is assigned to an orthogonal sub-channel such that each user in a pair applies NOMA to transmit data to the CBS without causing interference with other groups. Subsequently, the signal transmitted by the CUs of each NOMA group can be independently retrieved by using successive interference cancellation (SIC). The CUs are assumed to harvest solar energy to maintain operations. Moreover, joint power and bandwidth allocation is taken into account at the CBS to optimize energy and spectrum efficiency in order to obtain the maximum long-term data rate for the system. To this end, we propose a deep actor-critic reinforcement learning (DACRL) algorithm to respectively model the policy function and value function for the actor and critic of the agent (i.e., the CBS), in which the actor can learn about system dynamics by interacting with the environment. Meanwhile, the critic can evaluate the action taken such that the CBS can optimally assign power and bandwidth to the CUs when the training phase finishes. Numerical results validate the superior performance of the proposed scheme, compared with other conventional schemes.
We study jamming attacks in the physical layer of multihop cognitive radio networks (MHCRNs) where energy-constrained relays forward information from the source to the destination. Meanwhile, a jammer can transmit interfering signals on a channel such that all ongoing transmissions on this channel will be corrupted. In this paper, all jammers can attack only one of the predefined channels in each time slot. Moreover, they can randomly switch channels to start jamming another channel at the beginning of every time slot. The switching behavior is assumed to follow a Gaussian distribution. Due to limited battery capacity in the relays, energy harvesting is utilized to solve the energy-constrained problem in the cognitive radio network. Subsequently, relays are able to harvest energy from non-radio frequency (non-RF) signals such as solar, wind, or temperature. In this paper, we determine the throughput/delay ratio as a key metric to evaluate the performance in MHCRNs. Owing to the limited battery capacity in the relays and the jamming problem, the source needs to select proper relays and channels for each data transmission frame to optimize overall network performance in terms of end-to-end delay, throughput, and energy efficiency. Therefore, we provide two novel multihop allocation schemes to maximize achievable end-to-end throughput while minimizing delay in the presence of jammers. Through simulation results, we validate the effectiveness of the proposed schemes under multiple jamming attacks in MHCRNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.