Fuzzy clustering especially fuzzy C-means (FCM) is considered as a useful tool in the processes of pattern recognition and knowledge discovery from a database; thus being applied to various crucial, socioeconomic applications. Nevertheless, the clustering quality of FCM is not high since this algorithm is deployed on the basis of the traditional fuzzy sets, which have some limitations in the membership representation, the determination of hesitancy and the vagueness of prototype parameters. Various improvement versions of FCM on some extensions of the traditional fuzzy sets have been proposed to tackle with those limitations. In this paper, we consider another improvement of FCM on the picture fuzzy sets, which is a generalization of the traditional fuzzy sets and the intuitionistic fuzzy sets, and present a novel picture fuzzy clustering algorithm, the so-called FC-PFS. A numerical example on the IRIS dataset is conducted to illustrate the activities of the proposed algorithm. The experimental results on various benchmark datasets of UCI Machine Learning Repository under different scenarios of parameters of the algorithm reveal that FC-PFS has better Communicated by V. Loia.
Software defect prediction has been one of the key areas of exploration in the domain of software quality. In this paper, we perform a systematic mapping to analyze all the software defect prediction literature available from 1995 to 2018 using a multi-stage process. A total of 156 studies are selected in the first step, and the final mapping is conducted based on these studies. The ability of a model to learn from data that does not come from the same project or organization will help organizations that do not have sufficient training data or are going to start work on new projects. The findings of this research are useful not only to the software engineering domain, but also to the empirical studies, which mainly focus on symmetry as they provide steps-by-steps solutions for questions raised in the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.